찾다
백엔드 개발파이썬 튜토리얼Pandas에서 중첩된 JSON 개체를 DataFrame으로 관리하는 방법은 무엇입니까?

How to Manage Nested JSON Objects as a DataFrame in Pandas?

중첩 객체가 포함된 중첩 JSON을 Pandas DataFrame으로 읽기

중첩 객체가 포함된 JSON 데이터를 처리할 때 Python에서 효율적으로 조작하는 것이 중요합니다. . Pandas는 이를 달성하기 위한 강력한 도구인 json_normalize를 제공합니다.

배열을 열로 확장

위치 배열을 별도의 열로 확장하려면 다음과 같이 json_normalize를 사용하세요.

<code class="python">import json
import pandas as pd

with open('myJson.json') as data_file:
    data = json.load(data_file)

df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], record_prefix='locations_')

print(df)</code>

이렇게 하면 확장된 열이 있는 데이터 프레임이 생성됩니다.

  locations_arrTime locations_arrTimeDiffMin locations_depTime  \
0                                                        06:32   
1             06:37                        1             06:40   
2             08:24                        1                     

  locations_depTimeDiffMin           locations_name locations_platform  \
0                        0  Spital am Pyhrn Bahnhof                  2   
1                        0  Windischgarsten Bahnhof                  2   
2                                    Linz/Donau Hbf               1A-B   

  locations_stationIdx locations_track number    name        date  
0                    0          R 3932         R 3932  01.10.2016  
1                    1                         R 3932  01.10.2016  
2                   22                         R 3932  01.10.2016 

여러 JSON 개체 처리

여러 개체가 포함된 JSON 파일의 경우 접근 방식은 다음과 같습니다. 원하는 데이터 구조에 따라 다릅니다.

개별 열 유지

개별 열(날짜, 번호, 이름, 위치)을 유지하려면 다음을 사용하세요.

<code class="python">df = pd.read_json('myJson.json')
df.locations = pd.DataFrame(df.locations.values.tolist())['name']
df = df.groupby(['date', 'name', 'number'])['locations'].apply(','.join).reset_index()

print(df)</code>

이렇게 하면 데이터가 그룹화되고 위치가 연결됩니다.

        date    name number                                          locations
0  2016-01-10  R 3932         Spital am Pyhrn Bahnhof,Windischgarsten Bahnho...

데이터 구조 평면화

평면화된 데이터 구조를 선호하는 경우 다음을 수행할 수 있습니다. 다음 설정으로 json_normalize를 사용하세요.

<code class="python">df = pd.read_json('myJson.json', orient='records', convert_dates=['date'])

print(df)</code>

이렇게 하면 단일 테이블에 데이터가 출력됩니다.

  number    date                   name  ... locations.arrTimeDiffMin locations.depTimeDiffMin locations.platform
0             R 3932  2016-01-10  R 3932  ...                       0                         0                  2
1             R 3932  2016-01-10  R 3932  ...                       1                         0                  2
2             R 3932  2016-01-10  R 3932  ...                       1                         -                  1A-B

위 내용은 Pandas에서 중첩된 JSON 개체를 DataFrame으로 관리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

파이썬의 루프 및 루프의 경우 : 각각의 장점은 무엇입니까?파이썬의 루프 및 루프의 경우 : 각각의 장점은 무엇입니까?May 13, 2025 am 12:01 AM

ForloopSareadvantageForkNowniTerations 및 Sequence, OffingSimplicityAndInamicConditionSandunkNowniTitionS 및 ControlOver Terminations를 제공합니다

파이썬 : 편집과 해석에 대한 깊은 다이빙파이썬 : 편집과 해석에 대한 깊은 다이빙May 12, 2025 am 12:14 AM

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?May 12, 2025 am 12:09 AM

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

루프 대 파이썬의 루프 : 주요 차이점 설명루프 대 파이썬의 루프 : 주요 차이점 설명May 12, 2025 am 12:08 AM

forloopsareideal when

루프를위한 것 및 기간 : 실용 가이드루프를위한 것 및 기간 : 실용 가이드May 12, 2025 am 12:07 AM

forloopsareusedwhendumberofitessiskNowninadvance, whilewhiloopsareusedwhentheationsdepernationsorarrays.2) whiloopsureatableforscenarioScontiLaspecOndCond

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기