>백엔드 개발 >파이썬 튜토리얼 >Pandas에서 체인 할당이 효율적인가요?

Pandas에서 체인 할당이 효율적인가요?

DDD
DDD원래의
2024-10-24 06:34:021072검색

Are Chained Assignments Efficient in Pandas?

Pandas의 연결 할당

소개

인기 데이터 조작 라이브러리인 Pandas의 연결 할당은 데이터 프레임의 값에 대해 연속적으로 수행되는 작업입니다. 작업이 제대로 처리되지 않으면 성능 문제가 발생할 수 있습니다.

연결된 할당 경고

Pandas는 연결 할당의 잠재적인 비효율성을 나타내기 위해 SettingWithCopy 경고를 발행합니다. 경고는 할당이 원래 데이터 프레임을 의도한 대로 업데이트하지 않을 수 있음을 사용자에게 경고합니다.

사본 및 참조

Pandas 시리즈 또는 데이터 프레임이 참조되면 복사본이 반환됩니다. 참조된 개체가 이후에 수정되면 오류가 발생할 수 있습니다. 예를 들어 다음 코드는 예상대로 작동하지 않을 수 있습니다.

<code class="python">data['amount'] = data['amount'].fillna(float)</code>

위 할당은 data['amount'] 시리즈의 복사본을 생성한 다음 업데이트됩니다. 이렇게 하면 원본 데이터 프레임이 업데이트되는 것을 방지할 수 있습니다.

Inplace 작업

불필요한 복사본 생성을 방지하기 위해 Pandas는 .inplace(True)로 표시되는 inplace 작업을 제공합니다. 이러한 작업은 원본 데이터 프레임을 직접 수정합니다.

<code class="python">data['amount'].fillna(data.groupby('num')['amount'].transform('mean'), inplace=True)</code>

연결 할당 방지의 이점

내부 작업 또는 별도 할당을 사용하면 다음과 같은 여러 가지 이점이 있습니다.

  • 성능 향상 불필요한 복사를 방지합니다.
  • 데이터 수정을 명시적으로 표시하여 코드 명확성을 향상합니다.
  • 복사본에서 여러 작업을 연결할 수 있습니다. 예:
<code class="python">data['amount'] = data['amount'].fillna(mean_avg) * 2</code>

결론

Pandas의 체인 할당을 이해하는 것은 코드 효율성을 최적화하고 데이터 수정 오류를 방지하는 데 중요합니다. 이 문서에 설명된 권장 사례를 준수하면 Pandas 작업의 정확성과 성능을 보장할 수 있습니다.

위 내용은 Pandas에서 체인 할당이 효율적인가요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.