Pandas DataFrame: 두 열로 그룹화 및 관찰 횟수 계산
데이터 분석에서는 특정 열과 데이터를 기반으로 데이터를 그룹화해야 하는 경우가 많습니다. 각 그룹 내의 관측치 수를 셉니다. Pandas DataFrame을 사용하여 이를 달성하려면 다음 문제를 자세히 살펴보겠습니다.
문제 설명:
여러 열이 있는 Pandas DataFrame을 생각해 보세요. 목표는 두 개의 열, 즉 'col5'와 'col2'를 기반으로 DataFrame을 그룹화하고 각 그룹 내의 고유 행 수를 계산하는 것입니다. 또한 각 'col2' 값의 최대 개수를 결정하려고 합니다.
해결책:
DataFrame을 그룹화하고 각 그룹의 행 수를 계산하려면 다음을 수행합니다. Pandas groupby() 함수를 활용하세요. 단계별 접근 방식은 다음과 같습니다.
1단계: DataFrame 그룹화
'col5' 및 'col2' 열을 기준으로 DataFrame 그룹화:
<code class="python">grouped_df = df.groupby(['col5', 'col2'])</code>
2단계: 행 계산
그룹화된 DataFrame에 size() 함수를 적용하여 각 그룹의 고유 행 수를 계산합니다.
<code class="python">counts = grouped_df.size()</code>
3단계: 각 'col2'의 최대 개수 찾기
각 'col2' 값의 최대 개수를 찾으려면 DataFrame 개수를 'col2'별로 그룹화한 다음 max() 함수를 적용합니다:
<code class="python">max_counts = counts.groupby(level=1).max()</code>
출력:
위 단계는 두 개의 별도 DataFrame을 제공합니다:
- counts: 각 그룹의 고유 행 수를 표시합니다.
- max_counts: 각 'col2' 값의 최대 개수를 표시합니다.
위 내용은 Pandas DataFrame을 두 열로 그룹화하고 관찰 횟수를 계산하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python 스크립트가 UNIX 시스템에서 실행할 수없는 이유는 다음과 같습니다. 1) CHMOD XYOUR_SCRIPT.PY를 사용하여 실행 권한을 부여하는 권한이 불충분합니다. 2) 잘못되거나 누락 된 Shebang 라인은 #!/usr/bin/envpython을 사용해야합니다. 3) 잘못된 환경 변수 설정, os.environ 디버깅을 인쇄 할 수 있습니다. 4) 잘못된 Python 버전을 사용하여 Shebang 행 또는 명령 줄에 버전을 지정할 수 있습니다. 5) 가상 환경을 사용하여 종속성을 분리하는 의존성 문제; 6) 구문 오류, python-mpy_compileyour_script.py를 사용하여 감지하십시오.

파이썬 어레이를 사용하는 것은 목록보다 많은 양의 숫자 데이터를 처리하는 데 더 적합합니다. 1) 배열 더 많은 메모리를 저장, 2) 배열은 숫자 값으로 작동하는 것이 더 빠르며, 3) 배열 힘 유형 일관성, 4) 배열은 C 배열과 호환되지만 목록만큼 유연하고 편리하지 않습니다.

더 나은 orfelexibility 및 mixdatatatatytys, 탁월한 정비 계산 모래 데이터 세트.

numpymanagesmemoryforlargearraysefficiedviews, 사본 및 메모리-맵핑 파일

ListSinpythondonoTrequireimportingAmodule, whilearraysfromtheArrayModuledOneedAnimport.1) ListSareBuilt-in, Versatile, andCanholdixedDatatypes.2) arraysarraysaremorememorememeMorememeMorememeMorememeMorememeMorememeMorememeMoremeMoremeTeverTopeTeveTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeveTeTeTeTeTeTeTeTete가 필요합니다.

PythonlistsCanstoreAnyDatAtype, ArrayModuLearRaysStoreOneType 및 NUMPYARRAYSAREFORNUMERICALPUTATION.1) LISTSAREVERSATILEBUTLESSMEMORY-EFFICENT.2) ARRAYMODUERRAYRAYRAYSARRYSARESARESARESARESARESARESAREDOREDORY-UNFICEDONOUNEOUSDATA.3) NumpyArraysUraysOrcepperperperperperperperperperperperperperperperferperferperferferpercient

whenyouattempttoreavalueofthewrongdatatypeinapythonaphonarray, thisiSdueTotheArrayModule의 stricttyPeenforcement, theAllElementStobeofthesAmetypecified bythetypecode.forperformancersassion, arraysaremoreficats the thraysaremoreficats thetheperfication the thraysaremorefications는

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Dreamweaver Mac版
시각적 웹 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
