Numpy 배열에 특정 행이 포함되어 있는지 확인
Numpy 배열로 작업할 때 특정 행이 존재하는지 확인해야 하는 경우가 있습니다. 배열 내에서. 표준 Python 목록과 달리 Numpy 배열은 이러한 검사를 수행할 때 특수한 접근 방식이 필요한 고유한 뉘앙스를 제공합니다.
Numpy 배열 차이점
Python 배열과 달리 Numpy 배열은 다음과 같은 경우에 다른 동작을 나타냅니다. in 연산자를 사용하여 행 존재 여부 테스트:
<code class="python"># Python Array a = [[1, 2], [10, 20], [100, 200]] [1, 2] in a # True [1, 20] in a # False # Numpy Array a = np.array([[1, 2], [10, 20], [100, 200]]) np.array([1, 2]) in a # True np.array([1, 20]) in a # True (Unexpected)</code>
효율적인 방법
Numpy 배열에서 행 존재를 효율적으로 확인하려면 다음 방법을 고려하세요.
- .tolist() 변환: Numpy 배열을 목록으로 변환한 다음 목록에서 in 연산자를 사용합니다.
<code class="python">[1, 2] in a.tolist() # True [1, 20] in a.tolist() # False</code>
- Numpy 보기: 배열 보기를 사용하여 행 존재를 빠르게 확인:
<code class="python">any((a[:]==[1,2]).all(1)) # True any((a[:]==[1,20]).all(1)) # False</code>
- Numpy에 대한 생성기: 각 행에 대해 생성 배열을 선택하고 대상 행과 비교:
<code class="python">any(([1, 2] == x).all() for x in a) # Stops on first occurrence</code>
- Numpy 논리 함수: Numpy 논리 함수를 사용하여 비교 수행:
<code class="python">any(np.equal(a, [1, 2]).all(1)) # True</code>
성능 고려 사항
이러한 방법의 성능은 배열의 크기와 구조에 따라 다릅니다. 다음은 300,000 x 3 배열에 대한 몇 가지 타이밍입니다.
early hit: [9000, 9001, 9002] in 300,000 elements: view: 0.01002 seconds python list: 0.00305 seconds gen over numpy: 0.06470 seconds logic equal: 0.00909 seconds late hit: [899970, 899971, 899972] in 300,000 elements: view: 0.00936 seconds python list: 0.30604 seconds gen over numpy: 6.47660 seconds logic equal: 0.00965 seconds
결론
Numpy 배열에서 효율적인 행 존재 확인을 위해 . tolist(), Numpy 뷰 또는 Numpy 논리 함수 메서드. 생성기 방법은 상당한 성능 오버헤드로 인해 피해야 합니다.
위 내용은 Numpy 배열에 특정 행이 포함되어 있는지 확인하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

ArraysareGenerallyMorememory- 효율적 인 thanlistsortingnumericaldataduetotheirfixed-sizenatureanddirectmemoryAccess.1) ArraysStoreElementsInacontiguousBlock, retoneverHead-fompointerSormetAdata.2) 목록, 종종 implementededymamamicArraysorlinkedStruct

ToconvertapyThonlisttoAnarray, usethearraymodule : 1) importThearrayModule, 2) CreateAlist, 3) Usearray (typecode, list) toconvertit, thetypecodelike'i'forintegers

Python 목록은 다양한 유형의 데이터를 저장할 수 있습니다. 예제 목록에는 정수, 문자열, 부동 소수점 번호, 부울, 중첩 목록 및 사전이 포함되어 있습니다. 목록 유연성은 데이터 처리 및 프로토 타이핑에서 가치가 있지만 코드의 가독성과 유지 관리를 보장하기 위해주의해서 사용해야합니다.

PythondoesnothaveBuilt-inarrays; Usethearraymoduleformory- 효율적인 호모 유전자 도자기, whilistsareversartileformixedDatatypes.arraysareefficiTiveDatasetsophesAty, whereferfiblityAndareAsiErtouseFormixOrdorSmallerSmallerSmallerSMATASETS.

themoscommonLyusedModuleForraySinisThonisNumpy.1) NumpyProvideseficileditionToolsForArrayOperations, IdealFornumericalData.2) ArrayscanBecreatedUsingnp.array () for1dand2dsuctures.3) Numpyexcelsinlement-wiseOperations Numpyexcelscelslikemea

toAppendElementStoapyThonList, usetHeappend () MethodForsingleElements, extend () formultipleements, andinsert () forspecificpositions.1) useappend () foraddingOneElementatateend.2) usextend () toaddmultipleementsefficially

To TeCreateAtheThonList, usequareBrackets [] andseparateItemswithCommas.1) ListSaredynamicandCanholdMixedDatAtatypes.2) useappend (), remove () 및 SlicingFormAnipulation.3) listlisteforences;) ORSL

금융, 과학 연구, 의료 및 AI 분야에서 수치 데이터를 효율적으로 저장하고 처리하는 것이 중요합니다. 1) 금융에서 메모리 매핑 파일과 Numpy 라이브러리를 사용하면 데이터 처리 속도가 크게 향상 될 수 있습니다. 2) 과학 연구 분야에서 HDF5 파일은 데이터 저장 및 검색에 최적화됩니다. 3) 의료에서 인덱싱 및 파티셔닝과 같은 데이터베이스 최적화 기술은 데이터 쿼리 성능을 향상시킵니다. 4) AI에서 데이터 샤딩 및 분산 교육은 모델 교육을 가속화합니다. 올바른 도구와 기술을 선택하고 스토리지 및 처리 속도 간의 트레이드 오프를 측정함으로써 시스템 성능 및 확장 성을 크게 향상시킬 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!