Numpy 고급 인덱싱을 사용한 효율적인 행렬 행 롤링
문제 설명:
행렬과 롤 값의 배열이 제공됨 , 작업은 해당 롤 값에 따라 독립적으로 행렬의 각 행을 롤링하는 것입니다. 예:
A = np.array([[4, 0, 0], [1, 2, 3], [0, 0, 5]]) r = np.array([2, 0, -1]) expected_result = np.array([np.roll(row, x) for row,x in zip(A, r)]) # [[0 0 4] # [1 2 3] # [0 5 0]]
Numpy 고급 인덱싱을 사용하는 솔루션:
행렬 행을 독립적으로 롤링하는 효율적인 접근 방식은 Numpy의 고급 인덱싱 기능을 활용하는 것입니다.
<code class="python">import numpy as np rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]] # Ensure negative shift to keep column_indices valid r[r <p><strong>설명:</strong></p> <ul> <li>행렬의 행과 열을 나타내는 np.ogrid를 사용하여 인덱스 그리드를 만듭니다.</li> <li>롤을 조정합니다. 음수 이동을 보장하여 유효한 열 인덱스를 얻습니다.</li> <li>열 인덱스 그리드에서 롤 값을 빼고 행을 따라 롤 값을 브로드캐스팅합니다.</li> <li>고급 인덱싱을 사용하여 롤된 값을 검색합니다. 원본 행렬 A의 요소.</li> </ul> <p>이 접근 방식을 사용하면 명시적인 for 루프를 우회하고 Numpy의 강력한 벡터화 연산을 활용하여 효율적이고 간결한 행 롤링이 가능합니다. 가장 빠른 방법인지 여부는 어레이 크기와 특정 시스템 구성에 따라 다릅니다.</p></code>
위 내용은 고급 Numpy 인덱싱을 사용하여 매트릭스 행을 효율적으로 롤링하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.

numpyissentialfornumericalcomputinginpythonduetoitsspeed, memory-efficiency 및 comperniveMathematicaticaltions

contiguousUousUousUlorAllocationScrucialForraysbecauseItAllowsOfficationAndFastElementAccess.1) ItenableSconstantTimeAccess, o (1), DuetodirectAddressCalculation.2) Itimprovesceeffiency theMultipleementFetchespercacheline.3) Itsimplififiesmomorym

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
