다중 세그먼트 3차 베지어 곡선을 사용하여 데이터 근사화: 거리 및 곡률 제약 조건 통합
문제:
저자는 두 가지 제약 조건이 있는 다중 세그먼트 3차 베지어 곡선을 사용하여 주어진 지리적 데이터를 근사화하기 위한 알고리즘을 찾고 있습니다.
- 베지어 곡선은 지정된 거리 이상으로 데이터 지점에서 벗어나서는 안 됩니다.
- 베지어 곡선은 지정된 공차 내에서 곡률을 나타내야 합니다.
해결책:
저자는 B 변환과 관련된 해결 방법을 발견했습니다. -FITPACK 라이브러리와 scipy의 Python 바인딩을 사용하여 최소 제곱 방식으로 데이터를 다중 세그먼트 베지어 곡선으로 근사화하는 스플라인. B-스플라인 표현은 부드러움 제어에 이점을 제공하고 원하는 근사값 부드러움을 지정하는 방법을 제공합니다.
알고리즘(단순화):
- 사용 FITPACK 라이브러리를 사용하여 최소 제곱 의미에서 주어진 지리 데이터에 근접한 B-Spline을 생성합니다.
- 제공된 b_spline_to_bezier_series 함수를 사용하여 생성된 B-Spline을 다중 세그먼트 3차 베지어 곡선으로 변환합니다.
- splprep의 부드러움 매개변수를 조정하여 거리와 곡률 제약 조건을 모두 만족하는 적절한 피팅을 찾습니다.
구현:
<code class="python">import matplotlib.pyplot as plt import numpy as np from scipy import interpolate # Read data into lists x and y tck, u = interpolate.splprep([x, y], s=3) # Generate B-Spline with smoothness parameter s=3 # Convert B-Spline to Bézier curve bezier_curves = b_spline_to_bezier_series(tck) # Evaluate and plot the Bézier curve unew = np.arange(0, 1.01, 0.01) out = interpolate.splev(unew, tck) plt.figure() plt.plot(x, y, out[0], out[1]) plt.show()</code>
평활도 매개변수 s를 조정하면 사용자는 원하는 거리와 곡률 제약 조건을 충족하는 곡선을 찾을 수 있습니다. 제공된 b_spline_to_bezier_series 함수는 추가 분석 또는 조작을 위해 B-Spline을 다중 세그먼트 3차 베지어 곡선으로 다시 변환합니다.
위 내용은 거리와 곡률 제약 조건을 고려하여 다중 세그먼트 3차 베지어 곡선으로 데이터를 근사화하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.

numpyissentialfornumericalcomputinginpythonduetoitsspeed, memory-efficiency 및 comperniveMathematicaticaltions

contiguousUousUousUlorAllocationScrucialForraysbecauseItAllowsOfficationAndFastElementAccess.1) ItenableSconstantTimeAccess, o (1), DuetodirectAddressCalculation.2) Itimprovesceeffiency theMultipleementFetchespercacheline.3) Itsimplififiesmomorym

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
