다중 세그먼트 3차 베지어 곡선을 사용하여 데이터 근사화: 거리 및 곡률 제약 조건 통합
문제:
저자는 두 가지 제약 조건이 있는 다중 세그먼트 3차 베지어 곡선을 사용하여 주어진 지리적 데이터를 근사화하기 위한 알고리즘을 찾고 있습니다.
해결책:
저자는 B 변환과 관련된 해결 방법을 발견했습니다. -FITPACK 라이브러리와 scipy의 Python 바인딩을 사용하여 최소 제곱 방식으로 데이터를 다중 세그먼트 베지어 곡선으로 근사화하는 스플라인. B-스플라인 표현은 부드러움 제어에 이점을 제공하고 원하는 근사값 부드러움을 지정하는 방법을 제공합니다.
알고리즘(단순화):
구현:
<code class="python">import matplotlib.pyplot as plt import numpy as np from scipy import interpolate # Read data into lists x and y tck, u = interpolate.splprep([x, y], s=3) # Generate B-Spline with smoothness parameter s=3 # Convert B-Spline to Bézier curve bezier_curves = b_spline_to_bezier_series(tck) # Evaluate and plot the Bézier curve unew = np.arange(0, 1.01, 0.01) out = interpolate.splev(unew, tck) plt.figure() plt.plot(x, y, out[0], out[1]) plt.show()</code>
평활도 매개변수 s를 조정하면 사용자는 원하는 거리와 곡률 제약 조건을 충족하는 곡선을 찾을 수 있습니다. 제공된 b_spline_to_bezier_series 함수는 추가 분석 또는 조작을 위해 B-Spline을 다중 세그먼트 3차 베지어 곡선으로 다시 변환합니다.
위 내용은 거리와 곡률 제약 조건을 고려하여 다중 세그먼트 3차 베지어 곡선으로 데이터를 근사화하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!