찾다
백엔드 개발파이썬 튜토리얼Keras에서 매개변수화된 사용자 정의 손실 함수를 구현하는 방법은 무엇입니까?

How to Implement Parameterized Custom Loss Functions in Keras?

Keras의 사용자 정의 손실 함수: 세부 가이드

사용자 정의 손실 함수를 사용하면 모델의 학습 과정을 특정 문제나 지표에 맞게 조정할 수 있습니다. . Keras에서 매개변수화된 사용자 정의 손실 함수를 구현하려면 특정 절차를 따라야 합니다.

계수/측정법 생성

먼저, 계수 또는 측정법을 계산하는 방법을 정의하세요. 손실 함수로 사용하고 싶습니다. 예를 들어 주사위 계수의 경우 다음 코드를 작성할 수 있습니다.

import keras.backend as K
def dice_coef(y_true, y_pred, smooth, thresh):
    y_pred = y_pred > thresh
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)

    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

Keras용 래퍼 함수

Keras 손실 함수는 허용(y_true, y_pred)만 허용합니다. 매개변수로. 이 형식에 맞추려면 손실 함수를 반환하는 래퍼 함수를 ​​만듭니다.

def dice_loss(smooth, thresh):
  def dice(y_true, y_pred)
    return -dice_coef(y_true, y_pred, smooth, thresh)
  return dice

사용자 정의 손실 함수 사용

이제 사용자 정의 손실 함수를 사용할 수 있습니다. 손실 인수로 컴파일하여 Keras에서:

# build model 
model = my_model()
# get the loss function
model_dice = dice_loss(smooth=1e-5, thresh=0.5)
# compile model
model.compile(loss=model_dice)

위 내용은 Keras에서 매개변수화된 사용자 정의 손실 함수를 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬에서 두 목록을 연결하는 대안은 무엇입니까?파이썬에서 두 목록을 연결하는 대안은 무엇입니까?May 09, 2025 am 12:16 AM

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

파이썬 : 두 목록을 병합하는 효율적인 방법파이썬 : 두 목록을 병합하는 효율적인 방법May 09, 2025 am 12:15 AM

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

편집 된 vs 해석 언어 : 장단점편집 된 vs 해석 언어 : 장단점May 09, 2025 am 12:06 AM

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

파이썬 : 가장 완전한 가이드 인 루프를 위해파이썬 : 가장 완전한 가이드 인 루프를 위해May 09, 2025 am 12:05 AM

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

Python은 문자열로 나열됩니다Python은 문자열로 나열됩니다May 09, 2025 am 12:02 AM

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 ​​문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

Python의 하이브리드 접근법 : 컴파일 및 해석 결합Python의 하이브리드 접근법 : 컴파일 및 해석 결합May 08, 2025 am 12:16 AM

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

Python 's 'for'와 'whind'루프의 차이점을 배우십시오Python 's 'for'와 'whind'루프의 차이점을 배우십시오May 08, 2025 am 12:11 AM

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python Concatenate는 중복과 함께 목록입니다Python Concatenate는 중복과 함께 목록입니다May 08, 2025 am 12:09 AM

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 ​​있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.