Keras의 사용자 정의 손실 함수: 주사위 오류 계수 구현
이 기사에서는 사용자 정의 손실 함수를 만드는 방법을 살펴보겠습니다. Keras에서는 주사위 오류 계수에 중점을 둡니다. 매개변수화된 계수를 구현하고 Keras 요구 사항과의 호환성을 위해 이를 래핑하는 방법을 배웁니다.
계수 구현
사용자 정의 손실 함수에는 계수와 계수가 모두 필요합니다. 래퍼 기능. 계수는 목표값과 예측값을 비교하는 주사위 오류를 측정합니다. 아래 Python 표현식을 사용할 수 있습니다.
<code class="python">def dice_hard_coe(y_true, y_pred, threshold=0.5, axis=[1,2], smooth=1e-5): # Calculate intersection, labels, and compute hard dice coefficient output = tf.cast(output > threshold, dtype=tf.float32) target = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(output, target), axis=axis) l = tf.reduce_sum(output, axis=axis) r = tf.reduce_sum(target, axis=axis) hard_dice = (2. * inse + smooth) / (l + r + smooth) # Return the mean hard dice coefficient return hard_dice</code>
래퍼 함수 생성
Keras에서는 (y_true, y_pred)만 매개변수로 사용하는 손실 함수가 필요합니다. 따라서 이 요구 사항을 준수하는 다른 함수를 반환하는 래퍼 함수가 필요합니다. 래퍼 함수는 다음과 같습니다.
<code class="python">def dice_loss(smooth, thresh): def dice(y_true, y_pred): # Calculate the dice coefficient using the coefficient function return -dice_coef(y_true, y_pred, smooth, thresh) # Return the dice loss function return dice</code>
사용자 정의 손실 함수 사용
이제 모델을 컴파일하여 Keras에서 사용자 정의 주사위 손실 함수를 사용할 수 있습니다. :
<code class="python"># Build the model model = my_model() # Get the Dice loss function model_dice = dice_loss(smooth=1e-5, thresh=0.5) # Compile the model model.compile(loss=model_dice)</code>
이러한 방식으로 사용자 정의 주사위 오류 계수를 구현함으로써 주사위 오류가 관련 지표인 이미지 분할 및 기타 작업에 대한 모델 성능을 효과적으로 평가할 수 있습니다.
위 내용은 Keras에서 주사위 오류 계수에 대한 사용자 정의 손실 함수를 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.

fastestestestedforListCancatenationInpythondSpendsonListsize : 1) Forsmalllist, OperatoriseFficient.2) ForlargerLists, list.extend () OrlistComprehensionIsfaster, withextend () morememory-efficientBymodingListsin-splace.

toInsertElmentsIntoapyThonList, useAppend () toaddtotheend, insert () foraspecificposition, andextend () andextend () formultipleElements.1) useappend () foraddingsingleitemstotheend.2) useinsert () toaddatespecificindex, 그러나)

pythonlistsareimplementedesdynamicarrays, notlinkedlists.1) thearestoredIntIguousUousUousUousUousUousUousUousUousUousInSeripendExeDaccess, LeadingSpyTHOCESS, ImpactingEperformance

PythonoffersfourmainmethodstoremoveElementsfromalist : 1) 제거 (값) 제거 (값) removesthefirstoccurrencefavalue, 2) pop (index) 제거 elementatAspecifiedIndex, 3) delstatemeveselementsByindexorSlice, 4) RemovesAllestemsfromTheChmetho

Toresolvea "permissionDenied"오류가 발생할 때 오류가 발생합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기