malloc() と free() の実装に関するこのシリーズの前回の 投稿 では、新しいブロックを解放することでメモリ ブロックを再利用し、ヒープを削減する方法を示しました。ただし、現在の関数には微妙な問題があります。新しいブロックの再利用が優先されるため、時間の経過とともにメモリ消費量が増加する可能性があります。なぜこのようなことが起こるのでしょうか?分解してみましょう。
最近のブロックを再利用してヒープを削減
次のシナリオを考えてみましょう。まず、4 つのメモリ ブロックを割り当てます。
void *ptr1 = abmalloc(8); void *ptr2 = abmalloc(8); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
メモリ構造は次のように視覚化できます:
さて、最初と 3 番目のブロックを解放します…
abfree(ptr1); abfree(ptr3);
…次の構造になります:
次に、同じサイズの別のブロックを割り当てます。
void *ptr5 = abmalloc(8);
関数 abmalloc() が最新の空きブロックの検索を開始すると、先頭のブロックが再利用されます。ここで最後のブロックを解放するとします:
ここで最後のブロックを解放すると…
abfree(ptr4);
…前のブロックはもう空いていないため、ヒープ サイズを 8 バイト ブロック 1 つだけ減らすことができます。
古いブロックの再利用
ここで、同じシナリオを想像してください。ただし、変更が 1 つあります。関数は、最も古いブロックから空きブロックの検索を開始します。初期構造は同じになります…
…そして再び最初と 3 番目のメモリ ブロックを解放します:
今回は、最初のブロックが再利用されます:
最後のブロックを解放すると、先頭に 2 つの空きブロックができ、ヒープを 8 バイト ブロック 2 つ減らすことができます。
この例は、新しいブロックを優先することで、古い未使用のブロックが蓄積され、メモリが浪費され、不必要なヒープの増加につながることを示しています。解決策は、古いブロックの再利用を優先して検索戦略を変更することです。
古いブロックの優先の実装
この問題を解決するには、ヘッダー内の次のブロックへのポインターを追加することから始めます。また、最初のブロックへのグローバル ポインターも作成します。これにより、そこから検索を開始できます。
typedef struct Header { struct Header *previous, *next; size_t size; bool available; } Header; Header *first = NULL; Header *last = NULL;
2 つの異なる状況でヘッダーを持つメモリ ブロックを作成するので、小さなリファクタリングを行いましょう。ヘッダーを割り当てて初期化するヘルパー関数にこのロジックを抽出します (フィールド nextwith NULL の設定を含む)。
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header->previous = previous; header->next = NULL; header->size = size; header->available = false; return header; }
この新しい関数を使用すると、abmalloc() 内のロジックを簡素化できます。
void *abmalloc(size_t size) { if (size == 0) { return NULL; } Header *header = last; while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->previous; } last = header_new(last, size, false); return last + 1; }
これで、最初と最後のブロックにアクセスできるようになり、ブロックが与えられると、前後のブロックを見つけることができます。また、最初のブロックへのポインターが null の場合、まだブロックが割り当てられていないこともわかります。したがって、この場合は、ブロックをすぐに割り当て、最初と最後の両方を初期化します。
void *abmalloc(size_t size) { if (size == 0) { return NULL; } if (first == NULL) { first = last = header_new(NULL, size, false); return first + 1; }
最初に NULL でなくなった場合は、すでに割り当てられたブロックがあるため、再利用可能なブロックの検索を開始します。引き続き変数ヘッダーをイテレータとして使用しますが、検索は最新のブロックから開始するのではなく、最も古いブロックから開始します:
Header *header = first;
各反復で、前のブロックに戻るのではなく、シーケンス内の次のブロックに進みます。
while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->next; }
ロジックは同じです。十分なサイズの利用可能なブロックが見つかった場合は、それが返されます。それ以外の場合、リストを走査した後に再利用可能なブロックが見つからない場合は、新しいブロックが割り当てられます:
last = header_new(last, size, false);
ここで、最後のブロック (割り当て後、最後から 2 番目) を調整する必要があります。 NULL を指していましたが、今度は新しいブロックを指しているはずです。これを行うには、前のブロックの次のフィールドを新しい最後のブロックに設定します。
last->previous->next = last; return last + 1; }
Adjustments in abfree()
The function abfree() basically maintains the same structure, but now we must handle some edge cases. When we free blocks at the top of the heap, a new block becomes the last one, as we already do in this snippet:
last = header->previous; brk(header)
Here, the pointer header references the last non-null block available on the stack. We have two possible scenarios:
- the current block has a previous block, which will become the new last block. In this case, we should set the pointer nextof this block to NULL.
- the current block does not have a previous block (i.e., it is the first and oldest block). When it is freed, the stack is empty. In this case, instead of trying to update a field of a non-existent block, we simply set it first to NULL, indicating that there are no more allocated blocks.
Here is how we implement it:
last = header->previous; if (last != NULL) { last->next = NULL; } else { first = NULL; } brk(header);
Conclusion
Our functions abmalloc() and abfree() now look like this:
typedef struct Header { struct Header *previous, *next; size_t size; bool available; } Header; Header *first = NULL; Header *last = NULL; Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header->previous = previous; header->next = NULL; header->size = size; header->available = false; return header; } void *abmalloc(size_t size) { if (size == 0) { return NULL; } if (first == NULL) { first = last = header_new(NULL, size, false); return first + 1; } Header *header = first; while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->next; } last = header_new(last, size, false); last->previous->next = last; return last + 1; } void abfree(void *ptr) { if (ptr == NULL) { return; } Header *header = (Header*) ptr - 1; if (header == last) { while ((header->previous != NULL) && header->previous->available) { header = header->previous; } last = header->previous; if (last != NULL) { last->next = NULL; } else { first = NULL; } brk(header); } else { header->available = true; } }
This change allows us to save considerably more memory. There are, however, still problems to solve. For example, consider the following scenario: we request the allocation of a memory block of 8 bytes, and abmalloc() reuse a block of, say, 1024 bytes. There is clearly a waste.
We will see how to solve this in the next post.
위 내용은 malloc() 및 free() 구현 - 오래된 메모리가 먼저 재사용됨의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

C에서 다형성을 마스터하면 코드 유연성과 유지 관리가 크게 향상 될 수 있습니다. 1) 다형성은 다른 유형의 물체를 동일한 기본 유형의 물체로 취급 할 수 있도록합니다. 2) 상속 및 가상 기능을 통해 런타임 다형성을 구현합니다. 3) 다형성은 기존 클래스를 수정하지 않고 코드 확장을 지원합니다. 4) CRTP를 사용하여 컴파일 타임 다형성을 구현하면 성능이 향상 될 수 있습니다. 5) 스마트 포인터는 자원 관리를 돕습니다. 6) 기본 클래스에는 가상 파괴자가 있어야합니다. 7) 성능 최적화는 먼저 코드 분석이 필요합니다.

C Destructorsprovideprepisecontroloverresourcemanagement, whilegarbagecollectorsautomatememormanorymanagementbutintroction.c 파괴자 : 1) 허용 customcleanupactionswhenobjectsaredestroyed, 2) ggooutofscop을 방출하는 것은 즉시 방출

1) Pugixml 또는 TinyXML 라이브러리를 사용하여 XML 파일을 구문 분석하고 생성하는 데 도움이 될 수 있습니다. 2) 구문 분석을위한 DOM 또는 SAX 방법을 선택하고, 3) 중첩 노드 및 다단계 속성을 처리, 4) 디버깅 기술 및 모범 사례를 사용하여 성능을 최적화하십시오.

XML은 데이터, 특히 구성 파일, 데이터 저장 및 네트워크 통신에서 데이터를 구조화하는 편리한 방법을 제공하기 때문에 C에서 사용됩니다. 1) TinyXML, PugixML, RapidXML과 같은 적절한 라이브러리를 선택하고 프로젝트 요구에 따라 결정하십시오. 2) XML 파싱 및 생성의 두 가지 방법을 이해하십시오. DOM은 자주 액세스 및 수정에 적합하며 SAX는 큰 파일 또는 스트리밍 데이터에 적합합니다. 3) 성능을 최적화 할 때 TinyXML은 작은 파일에 적합하며 PugixML은 메모리와 속도에서 잘 작동하며 RapidXML은 큰 파일을 처리하는 데 탁월합니다.

C#과 C의 주요 차이점은 메모리 관리, 다형성 구현 및 성능 최적화입니다. 1) C#은 쓰레기 수집기를 사용하여 메모리를 자동으로 관리하는 반면 C는 수동으로 관리해야합니다. 2) C#은 인터페이스 및 가상 방법을 통해 다형성을 실현하고 C는 가상 함수와 순수한 가상 함수를 사용합니다. 3) C#의 성능 최적화는 구조 및 병렬 프로그래밍에 따라 다르며 C는 인라인 함수 및 멀티 스레딩을 통해 구현됩니다.

DOM 및 SAX 방법은 XML 데이터를 C에서 구문 분석하는 데 사용될 수 있습니다. 1) DOM 파싱은 XML로드를 메모리로, 작은 파일에 적합하지만 많은 메모리를 차지할 수 있습니다. 2) Sax Parsing은 이벤트 중심이며 큰 파일에 적합하지만 무작위로 액세스 할 수는 없습니다. 올바른 방법을 선택하고 코드를 최적화하면 효율성이 향상 될 수 있습니다.

C는 고성능과 유연성으로 인해 게임 개발, 임베디드 시스템, 금융 거래 및 과학 컴퓨팅 분야에서 널리 사용됩니다. 1) 게임 개발에서 C는 효율적인 그래픽 렌더링 및 실시간 컴퓨팅에 사용됩니다. 2) 임베디드 시스템에서 C의 메모리 관리 및 하드웨어 제어 기능이 첫 번째 선택이됩니다. 3) 금융 거래 분야에서 C의 고성능은 실시간 컴퓨팅의 요구를 충족시킵니다. 4) 과학 컴퓨팅에서 C의 효율적인 알고리즘 구현 및 데이터 처리 기능이 완전히 반영됩니다.

C는 죽지 않았지만 많은 주요 영역에서 번성했습니다 : 1) 게임 개발, 2) 시스템 프로그래밍, 3) 고성능 컴퓨팅, 4) 브라우저 및 네트워크 응용 프로그램, C는 여전히 유명한 활력 및 응용 시나리오를 보여줍니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.