찾다

IndexIVFFlat y IndexIVFPQ

다음은 IndexIVFFlatIndexIVFPQ 인덱스 간의 비교와 사용에 대한 몇 가지 대안입니다.

비교: IndexIVFFlat 대 IndexIVFPQ

특성
Characteristic IndexIVFFlat IndexIVFPQ
Storage Type Stores vectors in their original form. Utilizes product quantization (PQ) to compress vectors.
Precision High precision, as it performs exact searches within cells. May sacrifice some precision for compression, but still provides good results.
Search Speed Slower on large datasets due to exhaustive search. Faster, especially on large sets, thanks to reduced search space.
Memory Usage Consumes more memory as it stores all vectors without compression. Consumes significantly less memory due to compression (up to 97% less).
Configuration Simpler, only requires defining the number of cells (nlist). Requires defining both the number of cells (nlist) and code size (code_size).
Training Needs to be trained to create cells before adding data. Also requires training, but the process is more complex due to quantization.
색인IVFFlat 색인IVFPQ 저장 유형 벡터를 원래 형식으로 저장합니다. 곱 양자화(PQ)를 활용하여 벡터를 압축합니다. 정밀도 셀 내에서 정확한 검색을 수행하므로 정밀도가 높습니다. 압축을 위해 일부 정밀도가 희생될 수 있지만 여전히 좋은 결과를 제공합니다. 검색 속도 철저한 검색으로 인해 대규모 데이터 세트에서는 속도가 느려집니다. 검색 공간이 줄어들어 특히 대규모 세트에서 더 빠릅니다. 메모리 사용량 모든 벡터를 압축하지 않고 저장하므로 더 많은 메모리를 소비합니다. 압축으로 인해 훨씬 ​​적은 메모리를 소비합니다(최대 97% 감소). 구성 더 간단합니다. 셀 수(nlist)만 정의하면 됩니다. 셀 수(nlist)와 코드 크기(code_size)를 모두 정의해야 합니다. 훈련 데이터를 추가하기 전에 셀을 생성하도록 교육이 필요합니다. 또한 교육이 필요하지만 양자화로 인해 프로세스가 더 복잡합니다.

优点和缺点

IndexIVFFlat 的优点

  • 精度:在每个单元格内搜索时提供准确的结果。
  • 简单:易于理解和配置。

IndexIVFFlat 的缺点

  • 速度:处理大量数据时可能会非常慢。
  • 内存使用:不优化内存使用,这对于大型数据集可能会出现问题。

IndexIVFPQ 的优点

  • 速度:由于搜索空间减少,搜索速度更快。
  • 内存效率:显着减少内存使用量,从而可以处理更大的数据集。

IndexIVFPQ 的缺点

  • 精度:由于压缩,精度可能会略有损失。
  • 复杂性:配置和训练比 IndexIVFFlat 更复杂。

替代方案

  1. IndexFlatL2

    • 在不压缩的情况下执行详尽的搜索。非常适合需要最大精度的小型数据集。
  2. IndexPQ

    • 仅使用乘积量化而不使用聚类。当需要速度和精度之间的平衡但不需要聚类时很有用。
  3. IndexIVFScalarQuantizer

    • 将倒排索引与标量量化相结合,提供了一种不同的方法来减少内存使用并提高速度。
  4. 索引IVFPQR

    • 将 IVF 和 PQ 与基于代码的重新排名相结合的变体,在速度和提高的精度之间取得平衡。
  5. 综合索引

    • 使用index_factory创建组合索引,结合多种技术(例如OPQ IVF PQ)来进一步优化性能。

这些替代方案允许根据要解决的具体情况使解决方案适应精度、速度和内存使用方面的不同需求。

引用:
[1] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[2] https://ai.plainenglish.io/speeding-up-similarity-search-in-recommender-systems-with-faiss-advanced-concepts-part-ii-95e796a7db74?gi=ce57aff1a0c4
[3] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[4] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[5] https://unfoldai.com/effortless-large-scale-image-retrieval-with-faiss-a-hands-on-tutorial/
[6] https://www.pinecone.io/learn/series/faiss/product-quantization/
[7] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[8] https://github.com/facebookresearch/faiss/issues/1113

En Español,Soy Español,pero por respeto a la comunidad,pongo primero la traduccion al inglés。

Aquí tienes una comparación entre los índices IndexIVFFlat e IndexIVFPQ, junto con algunas alternativas para su uso:

比较:IndexIVFFlat 与 IndexIVFPQ

特征
Característica IndexIVFFlat IndexIVFPQ
Tipo de Almacenamiento Almacena vectores en su forma original. Utiliza cuantización de producto (PQ) para comprimir vectores.
Precisión Alta precisión, ya que realiza búsquedas exactas dentro de las celdas. Puede sacrificar algo de precisión por la compresión, pero aún proporciona buenos resultados.
Velocidad de Búsqueda Más lento en grandes conjuntos de datos debido a la búsqueda exhaustiva. Más rápido, especialmente en grandes conjuntos, gracias a la reducción del espacio de búsqueda.
Uso de Memoria Consume más memoria porque almacena todos los vectores sin compresión. Consume significativamente menos memoria debido a la compresión (hasta 97% menos).
Configuración Más simple, solo requiere definir el número de celdas (nlist). Requiere definir tanto el número de celdas (nlist) como el tamaño del código (code_size).
Entrenamiento Necesita ser entrenado para crear las celdas antes de añadir datos. También necesita entrenamiento, pero el proceso es más complejo debido a la cuantización.
IndexIVFFlat IndexIVFPQ 标题> Tipo de Almacenamiento 阿尔马塞纳矢量 en su forma 原始。 利用comprimir向量的产品优化(PQ)。 精确 高度精确,您可以实现精确的 las celdas 速度。 为了压缩而牺牲算法,但结果却是成比例的。 Búsqueda 速度 Más lento en grandes conjuntos de datos debido a la búsqueda exhausiva. 速度越来越快,尤其是大型联合,感谢 a la reducción del espacio de búsqueda。 Uso de Memoria 消耗更多的记忆来完成所有的罪恶向量。 消耗有意义的menos memoria debido a la compresión(hasta 97% menos)。 配置 非常简单,需要单独定义 el número de celdas (nlist)。 需要定义 tanto el número de celdas (nlist) 和 tamaño del código (code_size)。 娱乐 Necesita ser entrenado para crear las celdas antes de añadir datos。 También necesita entrenamiento, pero el proceso es más complejo debido a la cuantización. 表>

Pros and Cons

Pros of IndexIVFFlat

  • Precision: Provides exact results when searching each cell.
  • Simplicity: Easy to understand and configure.

Cons of IndexIVFFlat

  • Speed: Can be very slow with large volumes of data.
  • Memory Usage: Does not optimize memory usage, which can be a problem with large data sets.

Pros of IndexIVFPQ

  • Speed: Much faster in searches due to the reduction of the search space.
  • Memory Efficiency: Significantly reduces memory usage, allowing larger data sets to be handled.

Cons of IndexIVFPQ

  • Accuracy: There may be a slight loss in accuracy due to compression.
  • Complexity: The configuration and training are more complex than in IndexIVFFlat.

Alternatives

  1. IndexFlatL2

    • Performs an exhaustive search without compression. Ideal for small data sets where maximum precision is required.
  2. IndexPQ

    • Use only product quantization without grouping. It is useful when a balance between speed and precision is needed, but grouping is not required.
  3. IndexIVFScalarQuantizer

    • It combines inverted index with scalar quantization, offering a different approach to reduce memory usage and improve speed.
  4. IndexIVFPQR

    • A variant that combines IVF and PQ with code-based re-ranking, offering a balance between speed and improved accuracy.
  5. Composite Indexes

    • Use index_factory to create composite indexes that combine multiple techniques (e.g. OPQ IVF PQ) to further optimize performance.

These alternatives allow you to adapt the solution to different needs in terms of precision, speed and memory usage depending on the specific case you are addressing.

Citations:
[1] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[2] https://www.pinecone.io/learn/series/faiss/product-quantization/
[3] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[4] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[5] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[6] https://pub.towardsai.net/unlocking-the-power-of-efficient-vector-search-in-rag-applications-c2e3a0c551d5?gi=71a82e3ea10e
[7] https://www.pingcap.com/article/mastering-faiss-vector-database-a-beginners-handbook/
[8] https://wangzwhu.github.io/home/file/acmmm-t-part3-ann.pdf
[9] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-IndexIVFPQ.py
[10] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-indexivfflat.py

위 내용은 IndexIVFFlat y IndexIVFPQ의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.