>웹 프론트엔드 >JS 튜토리얼 >Microsoft Excel 새 단축 코드

Microsoft Excel 새 단축 코드

DDD
DDD원래의
2024-10-08 18:19:02253검색

Microsoft Excel New short Code

VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
INDEX/MATCH: =INDEX(range, MATCH(lookup_value, lookup_array, [match_type])
PivotTable: =SUMIFS(sum_range, criteria_range, criteria)
Conditional Formatting: =A1>average(A:A)
Chart creation: =SERIES(name, categories, values)
Data Analytics/Science (Python):
Dataframe creation: df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]})
Data merging: pd.merge(df1, df2, on='common_column')
GroupBy: df.groupby('column').sum()
Data visualization: plt.plot(df['column'])
Machine Learning: from sklearn.linear_model import LinearRegression; model = LinearRegression()
SQL:
Data insertion: INSERT INTO table (column1, column2) VALUES ('value1', 'value2');
Data update: UPDATE table SET column = 'new_value' WHERE condition;
Data deletion: DELETE FROM table WHERE condition;
Table creation: CREATE TABLE table (column1 data_type, column2 data_type);
Index creation: CREATE INDEX index_name ON table (column);
R:
Dataframe creation: df <- data.frame(column1 = c(1, 2, 3), column2 = c(4, 5, 6))
Data merging: merge(df1, df2, by = 'common_column')
GroupBy: aggregate(df$column, by = list(df$group), FUN = sum)
Data visualization: ggplot(df, aes(x = column)) + geom_bar()
Machine Learning: library(caret); model <- train(column ~ ., data = df)
Regular Expressions (regex):
Match email: \b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}\b
Match phone number: \d{3}[-.]?\d{3}[-.]?\d{4}
Match date (YYYY-MM-DD): \d{4}[-.]\d{2}[-.]\d{2}

위 내용은 Microsoft Excel 새 단축 코드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.