찾다
백엔드 개발파이썬 튜토리얼Python에서 tensorflow를 사용하여 테스트하기 위한 LLM 만들기

Creating an LLM for testing with tensorflow in Python

안녕하세요

작은 LLM 프로그램을 테스트하고 싶어서 tensorflow를 사용하기로 결정했습니다.

내 소스 코드는 https://github.com/victordalet/first_llm에서 확인할 수 있습니다


I - 요구사항

텐서플로우와 numpy를 설치해야 합니다


pip install 'numpy


<hr>

<h2>
  
  
  II - 데이터세트 생성
</h2>

<p>작은 데이터 세트를 계산하려면 데이터 문자열 배열을 만들어야 합니다. 예를 들어 저는 다음과 같이 만듭니다. </p>

<pre class="brush:php;toolbar:false">

data = [
    "Salut comment ca va",
    "Je suis en train de coder",
    "Le machine learning est une branche de l'intelligence artificielle",
    "Le deep learning est une branche du machine learning",
]


별 감흥이 없다면 Kaggle에서 데이터세트를 찾아보세요.


III - 모델 구축 및 학습

이를 위해 다양한 방법으로 소규모 LLM 클래스를 만듭니다.


class LLM:

    def __init__(self):
        self.model = None
        self.max_sequence_length = None
        self.input_sequences = None
        self.total_words = None
        self.tokenizer = None
        self.tokenize()
        self.create_input_sequences()
        self.create_model()
        self.train()
        test_sentence = "Pour moi le machine learning est"
        print(self.test(test_sentence, 10))

    def tokenize(self):
        self.tokenizer = Tokenizer()
        self.tokenizer.fit_on_texts(data)
        self.total_words = len(self.tokenizer.word_index) + 1

    def create_input_sequences(self):
        self.input_sequences = []
        for line in data:
            token_list = self.tokenizer.texts_to_sequences([line])[0]
            for i in range(1, len(token_list)):
                n_gram_sequence = token_list[:i + 1]
                self.input_sequences.append(n_gram_sequence)

        self.max_sequence_length = max([len(x) for x in self.input_sequences])
        self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre')

    def create_model(self):
        self.model = Sequential()
        self.model.add(Embedding(self.total_words, 100, input_length=self.max_sequence_length - 1))
        self.model.add(LSTM(150, return_sequences=True))
        self.model.add(Dropout(0.2))
        self.model.add(LSTM(100))
        self.model.add(Dense(self.total_words, activation='softmax'))

    def train(self):
        self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

        X, y = self.input_sequences[:, :-1], self.input_sequences[:, -1]
        y = tf.keras.utils.to_categorical(y, num_classes=self.total_words)

        self.model.fit(X, y, epochs=200, verbose=1)


IV - 테스트

마지막으로 클래스 생성자에서 호출되는 테스트 메서드를 사용하여 모델을 테스트합니다.

경고: 생성된 단어가 이전 단어와 동일하면 이 테스트 함수에서 생성을 차단합니다.


    def test(self, sentence: str, nb_word_to_generate: int):
        last_word = ""
        for _ in range(nb_word_to_generate):

            token_list = self.tokenizer.texts_to_sequences([sentence])[0]
            token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre')
            predicted = np.argmax(self.model.predict(token_list), axis=-1)
            output_word = ""
            for word, index in self.tokenizer.word_index.items():
                if index == predicted:
                    output_word = word
                    break

            if last_word == output_word:
                return sentence

            sentence += " " + output_word
            last_word = output_word

        return sentence


위 내용은 Python에서 tensorflow를 사용하여 테스트하기 위한 LLM 만들기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링파이썬의 이미지 필터링Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법Python을 사용하여 PDF 문서를 사용하는 방법Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 병렬 및 동시 프로그래밍 소개파이썬의 병렬 및 동시 프로그래밍 소개Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

파이썬에서 자신의 데이터 구조를 구현하는 방법파이썬에서 자신의 데이터 구조를 구현하는 방법Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.