찾다
백엔드 개발파이썬 튜토리얼Streamlit: ML 앱 생성을 위한 마술 지팡이

Streamlit데이터 과학기계 학습을 위한 웹 애플리케이션을 만들 수 있는 강력한 오픈 소스 프레임워크입니다. 몇 줄의 Python 코드.

간단하고 직관적이며 프런트엔드 경험이 필요하지 않습니다. 기계 학습 모델을 빠르게 배포하려는 초보자와 숙련된 개발자 모두에게 훌륭한 도구입니다.

이 블로그에서는 RandomForestClassifier와 함께 Iris 데이터세트를 사용하여 기본 Streamlit 앱과 머신러닝 프로젝트를 구축하는 단계별 프로세스를 안내하겠습니다. .

Streamlit 시작하기

프로젝트를 시작하기 전에 몇 가지 기본 Streamlit 기능을 살펴보고 프레임워크에 익숙해지도록 하겠습니다. 다음 명령을 사용하여 Streamlit을 설치할 수 있습니다.


pip install streamlit


설치한 후에는 app.py라는 Python 파일을 만들고 다음을 사용하여 실행하여 첫 번째 Streamlit 앱을 시작할 수 있습니다.


streamlit run app.py


이제 Streamlit의 핵심 기능을 살펴보겠습니다.

1. 제목 쓰기 및 텍스트 표시


import streamlit as st

# Writing a title
st.title("Hello World")

# Display simple text
st.write("Displaying a simple text")


Streamlit: The Magic Wand for ML App Creation

2. 데이터프레임 표시


import pandas as pd

# Creating a DataFrame
df = pd.DataFrame({
    "first column": [1, 2, 3, 4],
    "second column": [5, 6, 7, 8]
})

# Display the DataFrame
st.write("Displaying a DataFrame")
st.write(df)


Streamlit: The Magic Wand for ML App Creation

3. 차트로 데이터 시각화


import numpy as np

# Generating random data
chart_data = pd.DataFrame(
    np.random.randn(20, 4), columns=['a', 'b', 'c', 'd']
)

# Display the line chart
st.line_chart(chart_data)


Streamlit: The Magic Wand for ML App Creation

4. 사용자 상호 작용: 텍스트 입력, 슬라이더 및 선택 상자
Streamlit을 사용하면 사용자 입력에 따라 동적으로 업데이트되는 텍스트 입력, 슬라이더, 선택 상자와 같은 대화형 위젯을 사용할 수 있습니다.


# Text input
name = st.text_input("Your Name Is:")
if name:
    st.write(f'Hello, {name}')

# Slider
age = st.slider("Select Your Age:", 0, 100, 25)
if age:
    st.write(f'Your Age Is: {age}')

# Select Box
choices = ["Python", "Java", "Javascript"]
lang = st.selectbox('Favorite Programming Language', choices)
if lang:
    st.write(f'Favorite Programming Language is {lang}')


Streamlit: The Magic Wand for ML App Creation

5. 파일 업로드
사용자가 Streamlit 앱에서 동적으로 파일을 업로드하고 해당 콘텐츠를 표시하도록 허용할 수 있습니다.


# File uploader for CSV files
file = st.file_uploader('Choose a CSV file', 'csv')

if file:
    data = pd.read_csv(file)
    st.write(data)


Streamlit: The Magic Wand for ML App Creation

Streamlit을 사용하여 머신러닝 프로젝트 구축

이제 기본 사항을 익혔으니 머신러닝 프로젝트를 만들어 보겠습니다. 유명한 Iris 데이터 세트를 사용하고 scikit-learn의 RandomForestClassifier를 사용하여 간단한 분류 모델을 구축해 보겠습니다.

프로젝트 구조 :

  • 데이터세트를 로드합니다.
  • RandomForestClassifier를 훈련합니다.
  • 사용자가 슬라이더를 사용하여 기능을 입력할 수 있도록 합니다.
  • 입력된 특징을 바탕으로 종을 예측합니다.

1. 필요한 종속성 설치
먼저 필요한 라이브러리를 설치해 보겠습니다.


pip install streamlit scikit-learn numpy pandas


2. 라이브러리 가져오기 및 데이터 로드
필요한 라이브러리를 가져오고 Iris 데이터세트를 로드해 보겠습니다.


import streamlit as st
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

# Cache data for efficient loading
@st.cache_data
def load_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df["species"] = iris.target
    return df, iris.target_names

df, target_name = load_data()


3. 머신러닝 모델 학습
데이터가 확보되면 RandomForestClassifier를 훈련하여 특징을 기반으로 꽃의 종을 예측합니다.


# Train RandomForestClassifier
model = RandomForestClassifier()
model.fit(df.iloc[:, :-1], df["species"])


4. 입력 인터페이스 생성
이제 사용자가 예측을 위한 기능을 입력할 수 있도록 사이드바에 슬라이더를 만들겠습니다.


# Sidebar for user input
st.sidebar.title("Input Features")
sepal_length = st.sidebar.slider("Sepal length", float(df['sepal length (cm)'].min()), float(df['sepal length (cm)'].max()))
sepal_width = st.sidebar.slider("Sepal width", float(df['sepal width (cm)'].min()), float(df['sepal width (cm)'].max()))
petal_length = st.sidebar.slider("Petal length", float(df['petal length (cm)'].min()), float(df['petal length (cm)'].max()))
petal_width = st.sidebar.slider("Petal width", float(df['petal width (cm)'].min()), float(df['petal width (cm)'].max()))


5. 종 예측
사용자 입력을 받은 후 훈련된 모델을 사용하여 예측을 수행합니다.


# Prepare the input data
input_data = [[sepal_length, sepal_width, petal_length, petal_width]]

# Prediction
prediction = model.predict(input_data)
prediction_species = target_name[prediction[0]]

# Display the prediction
st.write("Prediction:")
st.write(f'Predicted species is {prediction_species}')


다음과 같습니다.

Streamlit: The Magic Wand for ML App Creation

Streamlit: The Magic Wand for ML App Creation

마지막으로,Streamlit을 사용하면 최소한의 노력으로 기계 학습 웹 인터페이스를 놀라울 정도로 쉽게 만들고 배포할 수 있습니다. ? 단 몇 줄의 코드만으로 대화형 앱을 구축할 수 있었습니다. 사용자가 특징을 입력하고 꽃의 종을 예측할 수 있는 기능? 머신러닝 모델을 사용합니다. ??

즐거운 코딩하세요! ?

위 내용은 Streamlit: ML 앱 생성을 위한 마술 지팡이의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?Apr 28, 2025 pm 04:34 PM

기사는 구문 모호성으로 인해 파이썬에서 튜플 이해의 불가능성에 대해 논의합니다. 튜플을 효율적으로 생성하기 위해 튜플 ()을 사용하는 것과 같은 대안이 제안됩니다. (159 자)

파이썬의 모듈과 패키지는 무엇입니까?파이썬의 모듈과 패키지는 무엇입니까?Apr 28, 2025 pm 04:33 PM

이 기사는 파이썬의 모듈과 패키지, 차이점 및 사용법을 설명합니다. 모듈은 단일 파일이고 패키지는 __init__.py 파일이있는 디렉토리이며 관련 모듈을 계층 적으로 구성합니다.

파이썬에서 Docstring이란 무엇입니까?파이썬에서 Docstring이란 무엇입니까?Apr 28, 2025 pm 04:30 PM

기사는 Python의 Docstrings, 사용법 및 혜택에 대해 설명합니다. 주요 이슈 : 코드 문서 및 접근성에 대한 문서의 중요성.

람다 기능이란 무엇입니까?람다 기능이란 무엇입니까?Apr 28, 2025 pm 04:28 PM

기사는 Lambda 기능, 일반 기능과의 차이 및 프로그래밍 시나리오에서의 유틸리티에 대해 설명합니다. 모든 언어가 그들을 지원하는 것은 아닙니다.

휴식은 무엇입니까, 계속해서 파이썬을 통과합니까?휴식은 무엇입니까, 계속해서 파이썬을 통과합니까?Apr 28, 2025 pm 04:26 PM

기사는 파괴, 계속 및 Python을 통과시켜 루프 실행 및 프로그램 흐름을 제어하는 ​​역할을 설명합니다.

파이썬의 패스는 무엇입니까?파이썬의 패스는 무엇입니까?Apr 28, 2025 pm 04:25 PM

이 기사는 기능 및 클래스와 같은 코드 구조에서 자리 표시 자로 사용되는 NULL 작업 인 Python의 'Pass'명령문에 대해 설명하여 구문 오류없이 향후 구현을 허용합니다.

파이썬에서 인수로 기능을 전달할 수 있습니까?파이썬에서 인수로 기능을 전달할 수 있습니까?Apr 28, 2025 pm 04:23 PM

기사는 파이썬의 인수와 같은 기능을 전달하는 것에 대해 논의하며, 모듈성과 같은 이점 및 분류 및 장식기와 같은 사용 사례를 강조합니다.

파이썬에서 //의 차이점은 무엇입니까?파이썬에서 //의 차이점은 무엇입니까?Apr 28, 2025 pm 04:21 PM

기사는 Python의 / 및 // 연산자에 대해 논의합니다 : / True Division, // for floor division. 주요 이슈는 차이점과 사용 사례를 이해하는 것입니다. 문자 수 : 158

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는