이번 주 Lux Tech Academy Kenya와 함께한 흥미롭고 유익한 세션에서 우리는 데이터 및 분석을 위한 Python에 대한 포괄적인 소개를 진행했습니다.
먼저 Anaconda 다운로드를 설치하고 Jupyter 노트북을 실행해야 합니다. 다음은 Anaconda/Jupyter 노트북을 다운로드할 수 있는 링크입니다: Anaconda/Jupyter 노트북 설치
나는 이 모든 지식의 풍성함으로 가득 찬 그릇처럼 느껴집니다. 그 중에서 몇 가지 하이라이트를 공유하겠습니다.
튜플은 목록과 유사하지만 더 고유한 데이터 구성을 용이하게 하는 내장 데이터 유형을 나타냅니다. 이는 괄호;my_cars= (1,2,3)를 사용하여 정의됩니다. 튜플은 위도 및 경도와 같이 시간이 지나도 변경되지 않는 고정된 항목 컬렉션을 나타냅니다. 목록과 달리 튜플은 수정할 수 없습니다. 일단 정의되면 튜플의 요소를 변경하거나 변경할 수 없습니다.
Python 목록은 튜플과 약간 다른 특정 범주로 정보를 구성할 수 있는 내장 데이터 시스템을 참조하기도 합니다. 다음은 과일 목록의 예입니다. my_fruits=['mangos','apples','grapes']
목록은 다양한 데이터 유형의 요소를 저장할 수 있으며 해당 요소는 .apend(),.remove() 등과 같은 함수를 사용하여 수정 가능하므로 프로그램에서 동적으로 커질 수 있습니다.
NumPy 배열은 Python 라이브러리에 대규모 데이터 세트를 저장하는 효율적인 방법을 제공하지만 다음과 같은 점에서 목록 및 튜플과 다릅니다. 동일한 데이터 유형의 요소만 저장하고 메모리 공간을 덜 사용하며 루프 프로세스가 없습니다. 벡터화된 작업을 지원하기 때문입니다.
Python에는 메모리 사용을 처리하는 다양한 프로세스가 있지만 주로 가비지 수집에 중점을 둘 것입니다. 이는 프로그램에 더 이상 필요하지 않은 개체를 제거하여 메모리를 예약합니다.
1.쓰레기 수집은 다음을 통해 수행할 수 있습니다.
참조 계산: Python 프로그램의 특정 개체를 가리키는 참조 수를 추적합니다. 참조 횟수가 0으로 떨어지면 객체에서 사용하는 메모리가 삭제됩니다.
2.순환 컬렉션: 후자와 비슷하지만, 순환적으로 객체가 서로 참조하는 경우에 사용됩니다.
마지막으로 분석 스크립트의 기능에 대해 간략하게 설명하겠습니다. 함수는 동일한 작업을 수행하기 위해 개별적으로 호출할 수 있는 재사용 가능한 코드 라인입니다. 기본 구문은 다음과 같습니다.
`def 함수 이름(작업)
코드 블록
기능을 설명
반환값
예:
squared_list=[b**2 for b in range(1,10)]
print(squared_list)`
출력: [1,4,9,16,49,64,81]
Jupyter Notebook은 초보자에게 매우 친숙하므로 이러한 경우에 적극 권장합니다.
이것은 빙산의 일각에 불과하며 다음 수업에서 더 많은 것을 배우고 싶습니다. 아는 것이 힘입니다. 더 나은 미래를 만들기 위해 계속해서 배우고 쌓아갑시다!
위 내용은 데이터 분석을 위한 Python 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.
