이번 주 Lux Tech Academy Kenya와 함께한 흥미롭고 유익한 세션에서 우리는 데이터 및 분석을 위한 Python에 대한 포괄적인 소개를 진행했습니다.
먼저 Anaconda 다운로드를 설치하고 Jupyter 노트북을 실행해야 합니다. 다음은 Anaconda/Jupyter 노트북을 다운로드할 수 있는 링크입니다: Anaconda/Jupyter 노트북 설치
나는 이 모든 지식의 풍성함으로 가득 찬 그릇처럼 느껴집니다. 그 중에서 몇 가지 하이라이트를 공유하겠습니다.
튜플은 목록과 유사하지만 더 고유한 데이터 구성을 용이하게 하는 내장 데이터 유형을 나타냅니다. 이는 괄호;my_cars= (1,2,3)를 사용하여 정의됩니다. 튜플은 위도 및 경도와 같이 시간이 지나도 변경되지 않는 고정된 항목 컬렉션을 나타냅니다. 목록과 달리 튜플은 수정할 수 없습니다. 일단 정의되면 튜플의 요소를 변경하거나 변경할 수 없습니다.
Python 목록은 튜플과 약간 다른 특정 범주로 정보를 구성할 수 있는 내장 데이터 시스템을 참조하기도 합니다. 다음은 과일 목록의 예입니다. my_fruits=['mangos','apples','grapes']
목록은 다양한 데이터 유형의 요소를 저장할 수 있으며 해당 요소는 .apend(),.remove() 등과 같은 함수를 사용하여 수정 가능하므로 프로그램에서 동적으로 커질 수 있습니다.
NumPy 배열은 Python 라이브러리에 대규모 데이터 세트를 저장하는 효율적인 방법을 제공하지만 다음과 같은 점에서 목록 및 튜플과 다릅니다. 동일한 데이터 유형의 요소만 저장하고 메모리 공간을 덜 사용하며 루프 프로세스가 없습니다. 벡터화된 작업을 지원하기 때문입니다.
Python에는 메모리 사용을 처리하는 다양한 프로세스가 있지만 주로 가비지 수집에 중점을 둘 것입니다. 이는 프로그램에 더 이상 필요하지 않은 개체를 제거하여 메모리를 예약합니다.
1.쓰레기 수집은 다음을 통해 수행할 수 있습니다.
참조 계산: Python 프로그램의 특정 개체를 가리키는 참조 수를 추적합니다. 참조 횟수가 0으로 떨어지면 객체에서 사용하는 메모리가 삭제됩니다.
2.순환 컬렉션: 후자와 비슷하지만, 순환적으로 객체가 서로 참조하는 경우에 사용됩니다.
마지막으로 분석 스크립트의 기능에 대해 간략하게 설명하겠습니다. 함수는 동일한 작업을 수행하기 위해 개별적으로 호출할 수 있는 재사용 가능한 코드 라인입니다. 기본 구문은 다음과 같습니다.
`def 함수 이름(작업)
코드 블록
기능을 설명
반환값
예:
squared_list=[b**2 for b in range(1,10)]
print(squared_list)`
출력: [1,4,9,16,49,64,81]
Jupyter Notebook은 초보자에게 매우 친숙하므로 이러한 경우에 적극 권장합니다.
이것은 빙산의 일각에 불과하며 다음 수업에서 더 많은 것을 배우고 싶습니다. 아는 것이 힘입니다. 더 나은 미래를 만들기 위해 계속해서 배우고 쌓아갑시다!
위 내용은 데이터 분석을 위한 Python 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

toAppendElementStoapyThonList, usetHeappend () MethodForsingleElements, extend () formultipleements, andinsert () forspecificpositions.1) useappend () foraddingOneElementatateend.2) usextend () toaddmultipleementsefficially

To TeCreateAtheThonList, usequareBrackets [] andseparateItemswithCommas.1) ListSaredynamicandCanholdMixedDatAtatypes.2) useappend (), remove () 및 SlicingFormAnipulation.3) listlisteforences;) ORSL

금융, 과학 연구, 의료 및 AI 분야에서 수치 데이터를 효율적으로 저장하고 처리하는 것이 중요합니다. 1) 금융에서 메모리 매핑 파일과 Numpy 라이브러리를 사용하면 데이터 처리 속도가 크게 향상 될 수 있습니다. 2) 과학 연구 분야에서 HDF5 파일은 데이터 저장 및 검색에 최적화됩니다. 3) 의료에서 인덱싱 및 파티셔닝과 같은 데이터베이스 최적화 기술은 데이터 쿼리 성능을 향상시킵니다. 4) AI에서 데이터 샤딩 및 분산 교육은 모델 교육을 가속화합니다. 올바른 도구와 기술을 선택하고 스토리지 및 처리 속도 간의 트레이드 오프를 측정함으로써 시스템 성능 및 확장 성을 크게 향상시킬 수 있습니다.

PythonArraysareCreatedusingThearrayModule, Notbuilt-inlikelists.1) importThearrayModule.2) SpecifyTyPeCode (예 : 'forIntegers.3) 초기에 초기화 성과의 공동체 정보가없는 사람들이 플렉스리스트.

Shebang 라인 외에도 Python 통역사를 지정하는 방법에는 여러 가지가 있습니다. 1. 명령 줄에서 직접 Python 명령을 사용하십시오. 2. 배치 파일 또는 쉘 스크립트를 사용하십시오. 3. Make 또는 Cmake와 같은 빌드 도구를 사용하십시오. 4. Invoke와 같은 작업 러너를 사용하십시오. 각 방법에는 장점과 단점이 있으며 프로젝트의 요구에 맞는 방법을 선택하는 것이 중요합니다.

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

드림위버 CS6
시각적 웹 개발 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.