머신러닝(ML)은 소프트웨어 개발의 세계를 빠르게 변화시켰습니다. 최근까지 Python은 TensorFlow 및 PyTorch와 같은 라이브러리 덕분에 ML 공간에서 지배적인 언어였습니다. 그러나 TensorFlow.js의 등장으로 JavaScript 개발자는 이제 친숙한 구문을 사용하여 브라우저나 Node.js에서 직접 모델을 구축하고 훈련함으로써 흥미진진한 기계 학습의 세계에 뛰어들 수 있습니다.
이 블로그 게시물에서는 JavaScript를 사용하여 머신러닝을 시작하는 방법을 살펴보겠습니다. TensorFlow.js를 사용하여 간단한 모델을 구축하고 훈련하는 예를 살펴보겠습니다.
왜 TensorFlow.js인가요?
TensorFlow.js는 기계 학습 모델을 완전히 JavaScript로 정의, 훈련 및 실행할 수 있는 오픈 소스 라이브러리입니다. 브라우저와 Node.js 모두에서 실행되므로 다양한 ML 애플리케이션에 매우 다용도로 사용할 수 있습니다.
TensorFlow.js가 흥미로운 몇 가지 이유는 다음과 같습니다.
- 실시간 훈련: 브라우저에서 직접 모델을 실행하여 실시간 상호작용을 제공할 수 있습니다.
- 크로스 플랫폼: 서버와 클라이언트 환경 모두에서 동일한 코드를 실행할 수 있습니다.
- 하드웨어 가속: GPU 가속을 위해 WebGL을 사용하여 계산 속도를 높입니다.
시작하는 방법을 알아보세요!
1. TensorFlow.js 설정
코드를 살펴보기 전에 TensorFlow.js를 설치해야 합니다. <script>를 통해 프로젝트에 포함할 수 있습니다. 환경에 따라 태그 또는 npm을 사용하세요.</script>
브라우저 설정
브라우저에서 TensorFlow.js를 사용하려면 다음 <script> HTML 파일의 태그:<br> </script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
Node.js 설정
Node.js 환경의 경우 npm을 사용하여 설치할 수 있습니다.
npm install @tensorflow/tfjs
2. 간단한 신경망 모델 구축
기본 선형 함수 y = 2x - 1의 출력을 예측하는 간단한 신경망을 만들어 보겠습니다. TensorFlow.js를 사용하여 이 모델을 만들고 훈련하겠습니다.
1단계: 모델 정의
하나의 조밀한 레이어가 있는 순차 모델(레이어의 선형 스택)을 정의하는 것부터 시작하겠습니다.
// Import TensorFlow.js import * as tf from '@tensorflow/tfjs'; // Create a simple sequential model const model = tf.sequential(); // Add a single dense layer with 1 unit (neuron) model.add(tf.layers.dense({units: 1, inputShape: [1]}));
여기서는 하나의 조밀한 레이어로 모델을 만들었습니다. 레이어에는 하나의 뉴런(단위: 1)이 있으며 단일 입력 기능(inputShape: [1])이 필요합니다.
2단계: 모델 컴파일
다음으로 최적화 프로그램과 손실 함수를 지정하여 모델을 컴파일합니다.
// Compile the model model.compile({ optimizer: 'sgd', // Stochastic Gradient Descent loss: 'meanSquaredError' // Loss function for regression });
작은 모델에 효과적인 SGD(Stochastic Gradient Descent) 최적화 프로그램을 사용합니다. 손실 함수인meanSquaredError는 이와 같은 회귀 작업에 적합합니다.
3단계: 훈련 데이터 준비
이제 함수 y = 2x - 1에 대한 훈련 데이터를 생성하겠습니다. TensorFlow.js에서 데이터는 텐서(다차원 배열)에 저장됩니다. 훈련 데이터를 생성하는 방법은 다음과 같습니다.
// Generate some synthetic data for training const xs = tf.tensor2d([0, 1, 2, 3, 4], [5, 1]); // Inputs (x values) const ys = tf.tensor2d([1, 3, 5, 7, 9], [5, 1]); // Outputs (y values)
이 경우 입력 값(0, 1, 2, 3, 4)이 포함된 텐서 xs와 y = 2x - 1을 사용하여 계산된 값이 포함된 해당 출력 텐서 ys를 만들었습니다.
4단계: 모델 학습
이제 데이터를 기반으로 모델을 훈련할 수 있습니다.
// Train the model model.fit(xs, ys, {epochs: 500}).then(() => { // Once training is complete, use the model to make predictions model.predict(tf.tensor2d([5], [1, 1])).print(); // Output will be close to 2*5 - 1 = 9 });
여기에서는 500세대(훈련 데이터에 대한 반복) 동안 모델을 훈련합니다. 훈련 후 모델을 사용하여 입력 값 5에 대한 출력을 예측합니다. 이는 9에 가까운 값을 반환해야 합니다(y = 2*5 - 1 = 9).
3. 브라우저에서 모델 실행
브라우저에서 이 모델을 실행하려면 TensorFlow.js 라이브러리와 JavaScript 코드가 포함된 HTML 파일이 필요합니다.
TensorFlow.js Example <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>Simple Neural Network with TensorFlow.js
app.js 파일에 위의 모델 구축 및 학습 코드를 포함할 수 있습니다.
위 내용은 JavaScript로 머신러닝 시작하기: TensorFlow.js를 사용한 초보자 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

javaScriptUSTWOTYPESOFSOFCOMMENTS : 단일 라인 (//) 및 multi-line (//)

Python과 JavaScript의 주요 차이점은 유형 시스템 및 응용 프로그램 시나리오입니다. 1. Python은 과학 컴퓨팅 및 데이터 분석에 적합한 동적 유형을 사용합니다. 2. JavaScript는 약한 유형을 채택하며 프론트 엔드 및 풀 스택 개발에 널리 사용됩니다. 두 사람은 비동기 프로그래밍 및 성능 최적화에서 고유 한 장점을 가지고 있으며 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

Python 또는 JavaScript를 선택할지 여부는 프로젝트 유형에 따라 다릅니다. 1) 데이터 과학 및 자동화 작업을 위해 Python을 선택하십시오. 2) 프론트 엔드 및 풀 스택 개발을 위해 JavaScript를 선택하십시오. Python은 데이터 처리 및 자동화 분야에서 강력한 라이브러리에 선호되는 반면 JavaScript는 웹 상호 작용 및 전체 스택 개발의 장점에 없어서는 안될 필수입니다.

파이썬과 자바 스크립트는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구와 개인 선호도에 따라 다릅니다. 1. Python은 간결한 구문으로 데이터 과학 및 백엔드 개발에 적합하지만 실행 속도가 느립니다. 2. JavaScript는 프론트 엔드 개발의 모든 곳에 있으며 강력한 비동기 프로그래밍 기능을 가지고 있습니다. node.js는 풀 스택 개발에 적합하지만 구문은 복잡하고 오류가 발생할 수 있습니다.

javaScriptisNotBuiltoncorc; it'SangretedLanguageThatrunsonOngineStenWrittenInc .1) javaScriptWasDesignEdasAlightweight, 해석 hanguageforwebbrowsers.2) Endinesevolvedfromsimpleplemporectreterstoccilpilers, 전기적으로 개선된다.

JavaScript는 프론트 엔드 및 백엔드 개발에 사용할 수 있습니다. 프론트 엔드는 DOM 작업을 통해 사용자 경험을 향상시키고 백엔드는 Node.js를 통해 서버 작업을 처리합니다. 1. 프론트 엔드 예 : 웹 페이지 텍스트의 내용을 변경하십시오. 2. 백엔드 예제 : node.js 서버를 만듭니다.

Python 또는 JavaScript는 경력 개발, 학습 곡선 및 생태계를 기반으로해야합니다. 1) 경력 개발 : Python은 데이터 과학 및 백엔드 개발에 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 적합합니다. 2) 학습 곡선 : Python 구문은 간결하며 초보자에게 적합합니다. JavaScript Syntax는 유연합니다. 3) 생태계 : Python에는 풍부한 과학 컴퓨팅 라이브러리가 있으며 JavaScript는 강력한 프론트 엔드 프레임 워크를 가지고 있습니다.

JavaScript 프레임 워크의 힘은 개발 단순화, 사용자 경험 및 응용 프로그램 성능을 향상시키는 데 있습니다. 프레임 워크를 선택할 때 : 1. 프로젝트 규모와 복잡성, 2. 팀 경험, 3. 생태계 및 커뮤니티 지원.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구