찾다
백엔드 개발파이썬 튜토리얼실제 기계 학습을 위해 분산 컴퓨팅이 필요한 이유

Why You Need Distributed Computing for Real-World Machine Learning

그리고 PySpark가 전문가처럼 대용량 데이터 세트를 처리하는 데 어떻게 도움이 되는지

PyTorch 및 TensorFlow와 같은 머신러닝 프레임워크는 모델 구축에 매우 적합합니다. 그러나 현실은 거대한 데이터 세트를 다루는 실제 프로젝트의 경우 좋은 모델 그 이상이 필요하다는 것입니다. 모든 데이터를 효율적으로 처리하고 관리할 수 있는 방법이 필요합니다. PySpark와 같은 분산 컴퓨팅이 문제를 해결하기 위해 등장하는 곳입니다.

실제 머신러닝에서 빅데이터를 처리하는 것이 PyTorch와 TensorFlow를 넘어서는 이유와 PySpark가 이를 달성하는 데 어떻게 도움이 되는지 자세히 살펴보겠습니다.
진짜 문제: 빅데이터
온라인에서 볼 수 있는 대부분의 ML 예제는 작고 관리 가능한 데이터 세트를 사용합니다. 모든 것을 메모리에 넣고, 가지고 놀고, 몇 분 만에 모델을 훈련할 수 있습니다. 그러나 신용 카드 사기 감지, 추천 시스템, 재무 예측과 같은 실제 시나리오에서는 수백만 또는 수십억 개의 행을 처리하게 됩니다. 갑자기 노트북이나 서버가 처리할 수 없게 되었습니다.

모든 데이터를 PyTorch 또는 TensorFlow에 한 번에 로드하려고 하면 문제가 발생합니다. 이러한 프레임워크는 대규모 데이터 세트를 효율적으로 처리하기 위한 것이 아니라 모델 교육용으로 설계되었습니다. 이것이 바로 분산 컴퓨팅이 중요한 부분입니다.
PyTorch와 TensorFlow만으로는 충분하지 않은 이유
PyTorch와 TensorFlow는 모델 구축 및 최적화에 적합하지만 대규모 데이터 작업을 처리할 때는 부족합니다. 두 가지 주요 문제:

  • 메모리 과부하: 학습 전에 전체 데이터 세트를 메모리에 로드합니다. 소규모 데이터 세트에는 효과가 있지만 테라바이트 규모의 데이터가 있으면 게임이 끝납니다.
  • 분산 데이터 처리 없음: PyTorch와 TensorFlow는 분산 데이터 처리를 처리하도록 구축되지 않았습니다. 여러 시스템에 걸쳐 방대한 양의 데이터가 분산되어 있다면 실제로는 도움이 되지 않습니다.

여기서 PySpark가 빛을 발합니다. 분산된 데이터를 사용하여 여러 시스템에서 효율적으로 처리하는 동시에 시스템 충돌 없이 대규모 데이터 세트를 처리하도록 설계되었습니다.

실제 사례: PySpark를 이용한 신용카드 사기 탐지
예를 들어 보겠습니다. 신용 카드 거래 데이터를 사용하는 사기 탐지 시스템을 작업하고 있다고 가정해 보겠습니다. 이 경우 Kaggle의 인기 있는 데이터 세트를 사용하겠습니다. 여기에는 284,000건이 넘는 거래가 포함되어 있으며 그 중 사기 거래는 1% 미만입니다.

1단계: Google Colab에서 PySpark 설정
최소한의 설정으로 PySpark를 실행할 수 있는 Google Colab을 사용하겠습니다.

!pip install pyspark

다음으로 필요한 라이브러리를 가져오고 Spark 세션을 시작하세요.

import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, sum, udf
from pyspark.ml.feature import VectorAssembler, StringIndexer, MinMaxScaler
from pyspark.ml.classification import RandomForestClassifier, GBTClassifier
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator
from pyspark.ml.linalg import Vectors
import numpy as np
from pyspark.sql.types import FloatType

pyspark 세션 시작

spark = SparkSession.builder \
    .appName("FraudDetectionImproved") \
    .master("local[*]") \
    .config("spark.executorEnv.PYTHONHASHSEED", "0") \
    .getOrCreate()

2단계: 데이터 로드 및 준비

data = spark.read.csv('creditcard.csv', header=True, inferSchema=True)
data = data.orderBy("Time")  # Ensure data is sorted by time
data.show(5)
data.describe().show()
# Check for missing values in each column
data.select([sum(col(c).isNull().cast("int")).alias(c) for c in data.columns]).show()

# Prepare the feature columns
feature_columns = data.columns
feature_columns.remove("Class")  # Removing "Class" column as it is our label

# Assemble features into a single vector
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
data = assembler.transform(data)
data.select("features", "Class").show(5)

# Split data into train (60%), test (20%), and unseen (20%)
train_data, temp_data = data.randomSplit([0.6, 0.4], seed=42)
test_data, unseen_data = temp_data.randomSplit([0.5, 0.5], seed=42)

# Print class distribution in each dataset
print("Train Data:")
train_data.groupBy("Class").count().show()

print("Test and parameter optimisation Data:")
test_data.groupBy("Class").count().show()

print("Unseen Data:")
unseen_data.groupBy("Class").count().show()

3단계: 모델 초기화

# Initialize RandomForestClassifier
rf = RandomForestClassifier(labelCol="Class", featuresCol="features", probabilityCol="probability")

# Create ParamGrid for Cross Validation
paramGrid = ParamGridBuilder() \
    .addGrid(rf.numTrees, [10, 20 ]) \
    .addGrid(rf.maxDepth, [5, 10]) \
    .build()

# Create 5-fold CrossValidator
crossval = CrossValidator(estimator=rf,
                          estimatorParamMaps=paramGrid,
                          evaluator=BinaryClassificationEvaluator(labelCol="Class", metricName="areaUnderROC"),
                          numFolds=5)

4단계: 적합, 교차 검증 실행, 가장 적합한 매개변수 세트 선택

# Run cross-validation, and choose the best set of parameters
rf_model = crossval.fit(train_data)

# Make predictions on test data
predictions_rf = rf_model.transform(test_data)

# Evaluate Random Forest Model
binary_evaluator = BinaryClassificationEvaluator(labelCol="Class", rawPredictionCol="rawPrediction", metricName="areaUnderROC")
pr_evaluator = BinaryClassificationEvaluator(labelCol="Class", rawPredictionCol="rawPrediction", metricName="areaUnderPR")

auc_rf = binary_evaluator.evaluate(predictions_rf)
auprc_rf = pr_evaluator.evaluate(predictions_rf)
print(f"Random Forest - AUC: {auc_rf:.4f}, AUPRC: {auprc_rf:.4f}")

# UDF to extract positive probability from probability vector
extract_prob = udf(lambda prob: float(prob[1]), FloatType())
predictions_rf = predictions_rf.withColumn("positive_probability", extract_prob(col("probability")))

5단계 정밀도, 재현율, F1 점수 계산 기능

# Function to calculate precision, recall, and F1-score
def calculate_metrics(predictions):
    tp = predictions.filter((col("Class") == 1) & (col("prediction") == 1)).count()
    fp = predictions.filter((col("Class") == 0) & (col("prediction") == 1)).count()
    fn = predictions.filter((col("Class") == 1) & (col("prediction") == 0)).count()

    precision = tp / (tp + fp) if (tp + fp) != 0 else 0
    recall = tp / (tp + fn) if (tp + fn) != 0 else 0
    f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) != 0 else 0

    return precision, recall, f1_score

6단계: 모델에 가장 적합한 임계값 찾기

# Find the best threshold for the model
best_threshold = 0.5
best_f1 = 0
for threshold in np.arange(0.1, 0.9, 0.1):
    thresholded_predictions = predictions_rf.withColumn("prediction", (col("positive_probability") > threshold).cast("double"))
    precision, recall, f1 = calculate_metrics(thresholded_predictions)

    if f1 > best_f1:
        best_f1 = f1
        best_threshold = threshold

print(f"Best threshold: {best_threshold}, Best F1-score: {best_f1:.4f}")

7단계: 보이지 않는 데이터 평가

# Evaluate on unseen data
predictions_unseen = rf_model.transform(unseen_data)
auc_unseen = binary_evaluator.evaluate(predictions_unseen)
print(f"Unseen Data - AUC: {auc_unseen:.4f}")

precision, recall, f1 = calculate_metrics(predictions_unseen)
print(f"Unseen Data - Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")

area_under_roc = binary_evaluator.evaluate(predictions_unseen)
area_under_pr = pr_evaluator.evaluate(predictions_unseen)
print(f"Unseen Data - AUC: {area_under_roc:.4f}, AUPRC: {area_under_pr:.4f}")

결과

Best threshold: 0.30000000000000004, Best F1-score: 0.9062
Unseen Data - AUC: 0.9384
Unseen Data - Precision: 0.9655, Recall: 0.7568, F1-score: 0.8485
Unseen Data - AUC: 0.9423, AUPRC: 0.8618

이 모델을 저장하고(몇 KB) pyspark 파이프라인 어디에서나 사용할 수 있습니다

rf_model.save()

실제 기계 학습 작업에서 대규모 데이터 세트를 처리할 때 PySpark가 큰 차이를 만드는 이유는 다음과 같습니다.

손쉬운 확장: PySpark는 클러스터 전체에 작업을 분산하여 메모리 부족 없이 테라바이트 규모의 데이터를 처리할 수 있습니다.
즉각적인 데이터 처리: PySpark는 전체 데이터 세트를 메모리에 로드할 필요가 없습니다. 필요에 따라 데이터를 처리하므로 훨씬 더 효율적입니다.
더 빠른 모델 교육: 분산 컴퓨팅을 사용하면 여러 시스템에 컴퓨팅 워크로드를 분산하여 모델을 더 빠르게 교육할 수 있습니다.
최종 생각
PyTorch와 TensorFlow는 머신러닝 모델을 구축하기 위한 환상적인 도구이지만 실제 대규모 작업에는 더 많은 것이 필요합니다. PySpark를 사용한 분산 컴퓨팅을 사용하면 대규모 데이터 세트를 효율적으로 처리하고 실시간으로 데이터를 처리하며 기계 학습 파이프라인을 확장할 수 있습니다.

따라서 다음에 사기 탐지, 추천 시스템, 재무 분석 등 대규모 데이터를 사용하여 작업할 때 PySpark를 사용하여 프로젝트를 한 단계 더 발전시키는 것을 고려해 보세요.

전체 코드와 결과를 보려면 이 노트를 확인하세요. :
https://colab.research.google.com/drive/1W9naxNZirirLRodSEnHAUWevYd5LH8D4?authuser=5#scrollTo=odmodmqKcY23

__

저는 Swapnil입니다. 결과와 아이디어에 대한 의견을 남겨주시거나 데이터, 소프트웨어 개발 작업 및 채용 정보에 대해 swapnil@nooffice.no로 저에게 핑을 보내주세요

위 내용은 실제 기계 학습을 위해 분산 컴퓨팅이 필요한 이유의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
목록과 배열 사이의 선택은 큰 데이터 세트를 다루는 파이썬 응용 프로그램의 전반적인 성능에 어떤 영향을 미칩니 까?목록과 배열 사이의 선택은 큰 데이터 세트를 다루는 파이썬 응용 프로그램의 전반적인 성능에 어떤 영향을 미칩니 까?May 03, 2025 am 12:11 AM

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

Python의 목록 대 배열에 대한 메모리가 어떻게 할당되는지 설명하십시오.Python의 목록 대 배열에 대한 메모리가 어떻게 할당되는지 설명하십시오.May 03, 2025 am 12:10 AM

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

파이썬 어레이에서 요소의 데이터 유형을 어떻게 지정합니까?파이썬 어레이에서 요소의 데이터 유형을 어떻게 지정합니까?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.

Numpy 란 무엇이며 Python의 수치 컴퓨팅에 중요한 이유는 무엇입니까?Numpy 란 무엇이며 Python의 수치 컴퓨팅에 중요한 이유는 무엇입니까?May 03, 2025 am 12:03 AM

numpyissentialfornumericalcomputinginpythonduetoitsspeed, memory-efficiency 및 comperniveMathematicaticaltions

'연속 메모리 할당'의 개념과 배열의 중요성에 대해 토론하십시오.'연속 메모리 할당'의 개념과 배열의 중요성에 대해 토론하십시오.May 03, 2025 am 12:01 AM

contiguousUousUousUlorAllocationScrucialForraysbecauseItAllowsOfficationAndFastElementAccess.1) ItenableSconstantTimeAccess, o (1), DuetodirectAddressCalculation.2) Itimprovesceeffiency theMultipleementFetchespercacheline.3) Itsimplififiesmomorym

파이썬 목록을 어떻게 슬라이스합니까?파이썬 목록을 어떻게 슬라이스합니까?May 02, 2025 am 12:14 AM

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?May 02, 2025 am 12:09 AM

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?May 02, 2025 am 12:09 AM

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기