정교한 주문 처리 시스템 구현에 관한 시리즈의 네 번째 기사에 오신 것을 환영합니다! 이전 게시물에서는 프로젝트의 기초를 마련하고, 고급 임시 워크플로를 탐색하고, 고급 데이터베이스 작업을 자세히 살펴봤습니다. 오늘 우리는 생산 준비 시스템에서 똑같이 중요한 측면인 모니터링과 경고에 초점을 맞추고 있습니다.
마이크로서비스 아키텍처, 특히 주문 관리와 같은 복잡한 프로세스를 처리하는 아키텍처에서는 효과적인 모니터링 및 알림이 매우 중요합니다. 이를 통해 우리는 다음을 수행할 수 있습니다.
Prometheus는 오픈 소스 시스템 모니터링 및 경고 도구 키트입니다. 강력한 기능과 광범위한 생태계로 인해 클라우드 네이티브 세계의 표준이 되었습니다. 주요 구성 요소는 다음과 같습니다.
또한 모니터링 및 관찰을 위한 인기 있는 오픈 소스 플랫폼인 Grafana를 사용하여 대시보드를 만들고 Prometheus 데이터를 시각화할 예정입니다.
이 게시물이 끝나면 다음을 수행할 수 있습니다.
들어가자!
구현을 시작하기 전에 모니터링 및 알림 설정에 중요한 몇 가지 주요 개념을 검토해 보겠습니다.
관찰 가능성은 출력을 검사하여 시스템의 내부 상태를 이해하는 능력을 의미합니다. 주문 처리 시스템과 같은 분산 시스템에서 관찰 가능성은 일반적으로 세 가지 주요 요소를 포함합니다.
이 게시물에서는 주로 측정항목에 초점을 맞추지만 이를 로그 및 추적과 통합할 수 있는 방법에 대해서도 다루겠습니다.
Prometheus는 풀 기반 아키텍처를 따릅니다.
Prometheus는 네 가지 핵심 측정항목 유형을 제공합니다.
PromQL (Prometheus Query Language) ialah bahasa berfungsi yang berkuasa untuk menanyakan data Prometheus. Ia membolehkan anda memilih dan mengagregat data siri masa dalam masa nyata. Ciri utama termasuk:
Kami akan melihat contoh pertanyaan PromQL semasa kami membina papan pemuka dan makluman kami.
Grafana ialah analitik sumber terbuka berbilang platform dan aplikasi web visualisasi interaktif. Ia menyediakan carta, graf dan makluman untuk web apabila disambungkan kepada sumber data yang disokong, yang mana Prometheus adalah salah satunya. Ciri utama termasuk:
Sekarang kita telah membincangkan konsep ini, mari kita mula melaksanakan sistem pemantauan dan amaran kami.
Mari mulakan dengan menyediakan Prometheus untuk memantau sistem pemprosesan pesanan kami.
Pertama, mari tambah Prometheus pada fail docker-compose.yml kami:
services: # ... other services ... prometheus: image: prom/prometheus:v2.30.3 volumes: - ./prometheus:/etc/prometheus - prometheus_data:/prometheus command: - '--config.file=/etc/prometheus/prometheus.yml' - '--storage.tsdb.path=/prometheus' - '--web.console.libraries=/usr/share/prometheus/console_libraries' - '--web.console.templates=/usr/share/prometheus/consoles' ports: - 9090:9090 volumes: # ... other volumes ... prometheus_data: {}
Seterusnya, buat fail prometheus.yml dalam direktori ./prometheus:
global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'prometheus' static_configs: - targets: ['localhost:9090'] - job_name: 'order_processing_api' static_configs: - targets: ['order_processing_api:8080'] - job_name: 'postgres' static_configs: - targets: ['postgres_exporter:9187']
Konfigurasi ini memberitahu Prometheus untuk mengikis metrik daripada dirinya sendiri, API pemprosesan pesanan kami dan pengeksport Postgres (yang akan kami sediakan kemudian).
Untuk mendedahkan metrik daripada perkhidmatan Go kami, kami akan menggunakan perpustakaan pelanggan Prometheus. Mula-mula, tambahkannya pada go.mod anda:
go get github.com/prometheus/client_golang
Sekarang, mari ubah suai fail Go utama kami untuk mendedahkan metrik:
package main import ( "net/http" "github.com/gin-gonic/gin" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" ) var ( httpRequestsTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Name: "http_requests_total", Help: "Total number of HTTP requests", }, []string{"method", "endpoint", "status"}, ) httpRequestDuration = prometheus.NewHistogramVec( prometheus.HistogramOpts{ Name: "http_request_duration_seconds", Help: "Duration of HTTP requests in seconds", Buckets: prometheus.DefBuckets, }, []string{"method", "endpoint"}, ) ) func init() { prometheus.MustRegister(httpRequestsTotal) prometheus.MustRegister(httpRequestDuration) } func main() { r := gin.Default() // Middleware to record metrics r.Use(func(c *gin.Context) { timer := prometheus.NewTimer(httpRequestDuration.WithLabelValues(c.Request.Method, c.FullPath())) c.Next() timer.ObserveDuration() httpRequestsTotal.WithLabelValues(c.Request.Method, c.FullPath(), string(c.Writer.Status())).Inc() }) // Expose metrics endpoint r.GET("/metrics", gin.WrapH(promhttp.Handler())) // ... rest of your routes ... r.Run(":8080") }
Kod ini menyediakan dua metrik:
Untuk persekitaran yang lebih dinamik, Prometheus menyokong pelbagai mekanisme penemuan perkhidmatan. Contohnya, jika anda menjalankan Kubernetes, anda mungkin menggunakan konfigurasi SD Kubernetes:
scrape_configs: - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+)
Konfigurasi ini secara automatik akan menemui dan mengikis metrik daripada pod dengan anotasi yang sesuai.
Prometheus menyimpan data dalam pangkalan data siri masa pada sistem fail tempatan. Anda boleh mengkonfigurasi masa pengekalan dan saiz storan dalam konfigurasi Prometheus:
global: scrape_interval: 15s evaluation_interval: 15s storage: tsdb: retention.time: 15d retention.size: 50GB # ... rest of the configuration ...
Konfigurasi ini menetapkan tempoh pengekalan selama 15 hari dan saiz storan maksimum 50GB.
Dalam bahagian seterusnya, kami akan menyelami dalam menentukan dan melaksanakan metrik tersuai untuk sistem pemprosesan pesanan kami.
Sekarang kami telah menyediakan Prometheus dan metrik HTTP asas dilaksanakan, mari tentukan dan laksanakan metrik tersuai khusus untuk sistem pemprosesan pesanan kami.
Apabila mereka bentuk metrik, adalah penting untuk memikirkan tentang cerapan yang ingin kami peroleh daripada sistem kami. Untuk sistem pemprosesan pesanan kami, kami mungkin mahu menjejaki:
Mari laksanakan metrik ini:
package metrics import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" ) var ( OrdersCreated = promauto.NewCounter(prometheus.CounterOpts{ Name: "orders_created_total", Help: "The total number of created orders", }) OrderProcessingTime = promauto.NewHistogram(prometheus.HistogramOpts{ Name: "order_processing_seconds", Help: "Time taken to process an order", Buckets: prometheus.LinearBuckets(0, 30, 10), // 0-300 seconds, 30-second buckets }) OrderStatusGauge = promauto.NewGaugeVec(prometheus.GaugeOpts{ Name: "orders_by_status", Help: "Number of orders by status", }, []string{"status"}) PaymentProcessed = promauto.NewCounterVec(prometheus.CounterOpts{ Name: "payments_processed_total", Help: "The total number of processed payments", }, []string{"status"}) InventoryUpdates = promauto.NewCounter(prometheus.CounterOpts{ Name: "inventory_updates_total", Help: "The total number of inventory updates", }) ShippingArrangementTime = promauto.NewHistogram(prometheus.HistogramOpts{ Name: "shipping_arrangement_seconds", Help: "Time taken to arrange shipping", Buckets: prometheus.LinearBuckets(0, 60, 5), // 0-300 seconds, 60-second buckets }) )
Sekarang kami telah menentukan metrik kami, mari laksanakan metrik tersebut dalam perkhidmatan kami:
package main import ( "time" "github.com/yourusername/order-processing-system/metrics" ) func createOrder(order Order) error { startTime := time.Now() // Order creation logic... metrics.OrdersCreated.Inc() metrics.OrderProcessingTime.Observe(time.Since(startTime).Seconds()) metrics.OrderStatusGauge.WithLabelValues("pending").Inc() return nil } func processPayment(payment Payment) error { // Payment processing logic... if paymentSuccessful { metrics.PaymentProcessed.WithLabelValues("success").Inc() } else { metrics.PaymentProcessed.WithLabelValues("failure").Inc() } return nil } func updateInventory(item Item) error { // Inventory update logic... metrics.InventoryUpdates.Inc() return nil } func arrangeShipping(order Order) error { startTime := time.Now() // Shipping arrangement logic... metrics.ShippingArrangementTime.Observe(time.Since(startTime).Seconds()) return nil }
Apabila menamakan dan melabel metrik, pertimbangkan amalan terbaik ini:
For API endpoints, we’ve already implemented basic instrumentation. For database operations, we can add metrics like this:
func (s *Store) GetOrder(ctx context.Context, id int64) (Order, error) { startTime := time.Now() defer func() { metrics.DBOperationDuration.WithLabelValues("GetOrder").Observe(time.Since(startTime).Seconds()) }() // Existing GetOrder logic... }
For Temporal workflows, we can add metrics in our activity implementations:
func ProcessOrderActivity(ctx context.Context, order Order) error { startTime := time.Now() defer func() { metrics.WorkflowActivityDuration.WithLabelValues("ProcessOrder").Observe(time.Since(startTime).Seconds()) }() // Existing ProcessOrder logic... }
Now that we have our metrics set up, let’s visualize them using Grafana.
First, let’s add Grafana to our docker-compose.yml:
services: # ... other services ... grafana: image: grafana/grafana:8.2.2 ports: - 3000:3000 volumes: - grafana_data:/var/lib/grafana volumes: # ... other volumes ... grafana_data: {}
Let’s create a dashboard for our order processing system:
For our first panel, let’s create a graph of order creation rate:
Let’s add another panel for order processing time:
For order status distribution:
Continue adding panels for other metrics we’ve defined.
Grafana allows us to create variables that can be used across the dashboard. Let’s create a variable for time range:
Now we can use this in our queries like this: rate(orders_created_total[$time_range])
In the next section, we’ll set up alerting rules to notify us of potential issues in our system.
Now that we have our metrics and dashboards set up, let’s implement alerting to proactively notify us of potential issues in our system.
When designing alerts, consider the following principles:
For our order processing system, we might want to alert on:
Let’s create an alerts.yml file in our Prometheus configuration directory:
groups: - name: order_processing_alerts rules: - alert: HighOrderProcessingErrorRate expr: rate(order_processing_errors_total[5m]) / rate(orders_created_total[5m]) > 0.05 for: 5m labels: severity: critical annotations: summary: High order processing error rate description: "Error rate is over the last 5 minutes" - alert: SlowOrderProcessing expr: histogram_quantile(0.95, rate(order_processing_seconds_bucket[5m])) > 300 for: 10m labels: severity: warning annotations: summary: Slow order processing description: "95th percentile of order processing time is over the last 5 minutes" - alert: UnusualOrderRate expr: abs(rate(orders_created_total[1h]) - rate(orders_created_total[1h] offset 1d)) > (rate(orders_created_total[1h] offset 1d) * 0.3) for: 30m labels: severity: warning annotations: summary: Unusual order creation rate description: "Order creation rate has changed by more than 30% compared to the same time yesterday" - alert: LowInventory expr: inventory_level < 10 for: 5m labels: severity: warning annotations: summary: Low inventory level description: "Inventory level for is " - alert: HighPaymentFailureRate expr: rate(payments_processed_total{status="failure"}[15m]) / rate(payments_processed_total[15m]) > 0.1 for: 15m labels: severity: critical annotations: summary: High payment failure rate description: "Payment failure rate is over the last 15 minutes"
Update your prometheus.yml to include this alerts file:
rule_files: - "alerts.yml"
Now, let’s set up Alertmanager to handle our alerts. Add Alertmanager to your docker-compose.yml:
services: # ... other services ... alertmanager: image: prom/alertmanager:v0.23.0 ports: - 9093:9093 volumes: - ./alertmanager:/etc/alertmanager command: - '--config.file=/etc/alertmanager/alertmanager.yml'
Create an alertmanager.yml in the ./alertmanager directory:
route: group_by: ['alertname'] group_wait: 30s group_interval: 5m repeat_interval: 1h receiver: 'email-notifications' receivers: - name: 'email-notifications' email_configs: - to: 'team@example.com' from: 'alertmanager@example.com' smarthost: 'smtp.example.com:587' auth_username: 'alertmanager@example.com' auth_identity: 'alertmanager@example.com' auth_password: 'password'
Update your prometheus.yml to point to Alertmanager:
alerting: alertmanagers: - static_configs: - targets: - alertmanager:9093
In the Alertmanager configuration above, we’ve set up email notifications. You can also configure other channels like Slack, PagerDuty, or custom webhooks.
In our alerts, we’ve used severity labels. We can use these in Alertmanager to implement different routing or notification strategies based on severity:
route: group_by: ['alertname'] group_wait: 30s group_interval: 5m repeat_interval: 1h receiver: 'email-notifications' routes: - match: severity: critical receiver: 'pagerduty-critical' - match: severity: warning receiver: 'slack-warnings' receivers: - name: 'email-notifications' email_configs: - to: 'team@example.com' - name: 'pagerduty-critical' pagerduty_configs: - service_key: '<your-pagerduty-service-key>' - name: 'slack-warnings' slack_configs: - api_url: '<your-slack-webhook-url>' channel: '#alerts'
Monitoring database performance is crucial for maintaining a responsive and reliable system. Let’s set up monitoring for our PostgreSQL database.
First, add the Postgres exporter to your docker-compose.yml:
services: # ... other services ... postgres_exporter: image: wrouesnel/postgres_exporter:latest environment: DATA_SOURCE_NAME: "postgresql://user:password@postgres:5432/dbname?sslmode=disable" ports: - 9187:9187
Make sure to replace user, password, and dbname with your actual PostgreSQL credentials.
Some important PostgreSQL metrics to monitor include:
Let’s create a new dashboard for database performance:
Let’s add some database-specific alerts to our alerts.yml:
- alert: HighDatabaseConnections expr: pg_stat_activity_count > 100 for: 5m labels: severity: warning annotations: summary: High number of database connections description: "There are active database connections" - alert: LowCacheHitRatio expr: pg_stat_database_blks_hit / (pg_stat_database_blks_hit + pg_stat_database_blks_read) < 0.9 for: 15m labels: severity: warning annotations: summary: Low database cache hit ratio description: "Cache hit ratio is "
Monitoring Temporal workflows is essential for ensuring the reliability and performance of our order processing system.
Temporal provides a metrics client that we can use to expose metrics to Prometheus. Let’s update our Temporal worker to include metrics:
import ( "go.temporal.io/sdk/client" "go.temporal.io/sdk/worker" "go.temporal.io/sdk/contrib/prometheus" ) func main() { // ... other setup ... // Create Prometheus metrics handler metricsHandler := prometheus.NewPrometheusMetricsHandler() // Create Temporal client with metrics c, err := client.NewClient(client.Options{ MetricsHandler: metricsHandler, }) if err != nil { log.Fatalln("Unable to create Temporal client", err) } defer c.Close() // Create worker with metrics w := worker.New(c, "order-processing-task-queue", worker.Options{ MetricsHandler: metricsHandler, }) // ... register workflows and activities ... // Run the worker err = w.Run(worker.InterruptCh()) if err != nil { log.Fatalln("Unable to start worker", err) } }
Important Temporal metrics to monitor include:
Let’s create a dashboard for Temporal workflows:
Let’s add some Temporal-specific alerts to our alerts.yml:
- alert: HighWorkflowFailureRate expr: rate(temporal_workflow_failed_total[15m]) / rate(temporal_workflow_completed_total[15m]) > 0.05 for: 15m labels: severity: critical annotations: summary: High workflow failure rate description: "Workflow failure rate is over the last 15 minutes" - alert: LongRunningWorkflow expr: histogram_quantile(0.95, rate(temporal_workflow_execution_time_bucket[1h])) > 3600 for: 30m labels: severity: warning annotations: summary: Long-running workflows detected description: "95th percentile of workflow execution time is over 1 hour"
These alerts will help you detect issues with your Temporal workflows, such as high failure rates or unexpectedly long-running workflows.
In the next sections, we’ll cover some advanced Prometheus techniques and discuss testing and validation of our monitoring setup.
As our monitoring system grows more complex, we can leverage some advanced Prometheus techniques to improve its efficiency and capabilities.
Recording rules allow you to precompute frequently needed or computationally expensive expressions and save their result as a new set of time series. This can significantly speed up the evaluation of dashboards and alerts.
Let’s add some recording rules to our Prometheus configuration. Create a rules.yml file:
groups: - name: example_recording_rules interval: 5m rules: - record: job:order_processing_rate:5m expr: rate(orders_created_total[5m]) - record: job:order_processing_error_rate:5m expr: rate(order_processing_errors_total[5m]) / rate(orders_created_total[5m]) - record: job:payment_success_rate:5m expr: rate(payments_processed_total{status="success"}[5m]) / rate(payments_processed_total[5m])
Add this file to your Prometheus configuration:
rule_files: - "alerts.yml" - "rules.yml"
Now you can use these precomputed metrics in your dashboards and alerts, which can be especially helpful for complex queries that you use frequently.
The Pushgateway allows you to push metrics from jobs that can’t be scraped, such as batch jobs or serverless functions. Let’s add a Pushgateway to our docker-compose.yml:
services: # ... other services ... pushgateway: image: prom/pushgateway ports: - 9091:9091
Now, you can push metrics to the Pushgateway from your batch jobs or short-lived processes. Here’s an example using the Go client:
import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/push" ) func runBatchJob() { // Define a counter for the batch job batchJobCounter := prometheus.NewCounter(prometheus.CounterOpts{ Name: "batch_job_processed_total", Help: "Total number of items processed by the batch job", }) // Run your batch job and update the counter // ... // Push the metric to the Pushgateway pusher := push.New("http://pushgateway:9091", "batch_job") pusher.Collector(batchJobCounter) if err := pusher.Push(); err != nil { log.Printf("Could not push to Pushgateway: %v", err) } }
Don’t forget to add the Pushgateway as a target in your Prometheus configuration:
scrape_configs: # ... other configs ... - job_name: 'pushgateway' static_configs: - targets: ['pushgateway:9091']
For large-scale systems, you might need to set up Prometheus federation, where one Prometheus server scrapes data from other Prometheus servers. This allows you to aggregate metrics from multiple Prometheus instances.
Here’s an example configuration for a federated Prometheus setup:
scrape_configs: - job_name: 'federate' scrape_interval: 15s honor_labels: true metrics_path: '/federate' params: 'match[]': - '{job="order_processing_api"}' - '{job="postgres_exporter"}' static_configs: - targets: - 'prometheus-1:9090' - 'prometheus-2:9090'
This configuration allows a higher-level Prometheus server to scrape specific metrics from other Prometheus servers.
Exemplars allow you to link metrics to trace data, providing a way to drill down from a high-level metric to a specific trace. This is particularly useful when integrating Prometheus with distributed tracing systems like Jaeger or Zipkin.
To use exemplars, you need to enable them in your Prometheus configuration:
global: scrape_interval: 15s evaluation_interval: 15s exemplar_storage: enable: true
Then, when instrumenting your code, you can add exemplars to your metrics:
import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" ) var ( orderProcessingDuration = promauto.NewHistogramVec( prometheus.HistogramOpts{ Name: "order_processing_duration_seconds", Help: "Duration of order processing in seconds", Buckets: prometheus.DefBuckets, }, []string{"status"}, ) ) func processOrder(order Order) { start := time.Now() // Process the order... duration := time.Since(start) orderProcessingDuration.WithLabelValues(order.Status).Observe(duration.Seconds(), prometheus.Labels{ "traceID": getCurrentTraceID(), }, ) }
This allows you to link from a spike in order processing duration directly to the trace of a slow order, greatly aiding in debugging and performance analysis.
Ensuring the reliability of your monitoring system is crucial. Let’s explore some strategies for testing and validating our Prometheus setup.
When unit testing your Go code, you can use the prometheus/testutil package to verify that your metrics are being updated correctly:
import ( "testing" "github.com/prometheus/client_golang/prometheus/testutil" ) func TestOrderProcessing(t *testing.T) { // Process an order processOrder(Order{ID: 1, Status: "completed"}) // Check if the metric was updated expected := ` # HELP order_processing_duration_seconds Duration of order processing in seconds # TYPE order_processing_duration_seconds histogram order_processing_duration_seconds_bucket{status="completed",le="0.005"} 1 order_processing_duration_seconds_bucket{status="completed",le="0.01"} 1 # ... other buckets ... order_processing_duration_seconds_sum{status="completed"} 0.001 order_processing_duration_seconds_count{status="completed"} 1 ` if err := testutil.CollectAndCompare(orderProcessingDuration, strings.NewReader(expected)); err != nil { t.Errorf("unexpected collecting result:\n%s", err) } }
To test that Prometheus is correctly scraping your metrics, you can set up an integration test that starts your application, waits for Prometheus to scrape it, and then queries Prometheus to verify the metrics:
func TestPrometheusIntegration(t *testing.T) { // Start your application go startApp() // Wait for Prometheus to scrape (adjust the sleep time as needed) time.Sleep(30 * time.Second) // Query Prometheus client, err := api.NewClient(api.Config{ Address: "http://localhost:9090", }) if err != nil { t.Fatalf("Error creating client: %v", err) } v1api := v1.NewAPI(client) ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second) defer cancel() result, warnings, err := v1api.Query(ctx, "order_processing_duration_seconds_count", time.Now()) if err != nil { t.Fatalf("Error querying Prometheus: %v", err) } if len(warnings) > 0 { t.Logf("Warnings: %v", warnings) } // Check the result if result.(model.Vector).Len() == 0 { t.Errorf("Expected non-empty result") } }
It’s important to verify that your monitoring system performs well under load. You can use tools like hey or vegeta to generate load on your system while observing your metrics:
hey -n 10000 -c 100 http://localhost:8080/orders
While the load test is running, observe your Grafana dashboards and check that your metrics are updating as expected and that Prometheus is able to keep up with the increased load.
To test your alerting rules, you can temporarily adjust the thresholds to trigger alerts, or use Prometheus’s API to manually fire alerts:
curl -H "Content-Type: application/json" -d '{ "alerts": [ { "labels": { "alertname": "HighOrderProcessingErrorRate", "severity": "critical" }, "annotations": { "summary": "High order processing error rate" } } ] }' http://localhost:9093/api/v1/alerts
This will send a test alert to your Alertmanager, allowing you to verify that your notification channels are working correctly.
As you implement and scale your monitoring system, keep these challenges and considerations in mind:
High cardinality can lead to performance issues in Prometheus. Be cautious when adding labels to metrics, especially labels with many possible values (like user IDs or IP addresses). Instead, consider using histogram metrics or reducing the cardinality by grouping similar values.
For large-scale systems, consider:
Your monitoring system is critical infrastructure. Consider:
Pastikan bahawa:
Untuk mengurangkan bunyi amaran:
Dalam siaran ini, kami telah merangkumi pemantauan dan amaran komprehensif untuk sistem pemprosesan pesanan kami menggunakan Prometheus dan Grafana. Kami telah menyediakan metrik tersuai, mencipta papan pemuka bermaklumat, melaksanakan makluman dan meneroka teknik dan pertimbangan lanjutan.
Dalam bahagian seterusnya siri kami, kami akan menumpukan pada pengesanan dan pembalakan yang diedarkan. Kami akan meliputi:
Nantikan semasa kami terus mempertingkatkan sistem pemprosesan pesanan kami, memfokus seterusnya untuk mendapatkan cerapan yang lebih mendalam tentang tingkah laku dan prestasi sistem yang diedarkan kami!
Adakah anda menghadapi masalah yang mencabar, atau memerlukan perspektif luaran tentang idea atau projek baharu? Saya boleh tolong! Sama ada anda ingin membina konsep bukti teknologi sebelum membuat pelaburan yang lebih besar, atau anda memerlukan panduan tentang isu yang sukar, saya sedia membantu.
Jika anda berminat untuk bekerja dengan saya, sila hubungi melalui e-mel di hungaikevin@gmail.com.
Mari jadikan cabaran anda sebagai peluang!
위 내용은 주문 처리 시스템 구현: 부품 모니터링 및 경고의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!