찾다
백엔드 개발파이썬 튜토리얼Python에서 FaceNet을 사용하여 얼굴 인식 시스템을 구축하는 방법

How to Build a Face Recognition System Using FaceNet in Python

얼굴 인식 기술은 보안 시스템부터 소셜 미디어까지 다양한 애플리케이션에서 점점 더 널리 보급되고 있습니다. 이 작업에 가장 효과적인 모델 중 하나는 얼굴 검증, 인식, 클러스터링을 위해 설계된 딥 러닝 모델인 FaceNet입니다.

이 튜토리얼에서는 FaceNet을 사용하여 Python으로 얼굴 인식 시스템을 구축하는 방법을 보여 드리겠습니다. 모델 로딩부터 얼굴 비교까지 모든 것을 다루겠습니다. 이 가이드를 마치면 자신의 프로젝트에서 얼굴 인식을 구현하기 위한 탄탄한 기반을 갖추게 될 것입니다.

페이스넷이란 무엇입니까?

FaceNet은 얼굴을 128차원 유클리드 공간에 매핑하는 Google이 개발한 딥 러닝 모델입니다. 이러한 임베딩은 얼굴의 필수 특징을 나타내므로 높은 정확도로 얼굴을 쉽게 비교하고 인식할 수 있습니다. 기존의 얼굴 인식 방법과 달리 FaceNet은 임베딩 학습에 중점을 두어 효율성과 확장성이 뛰어납니다.

전제 조건

코드를 살펴보기 전에 다음이 설치되어 있는지 확인하세요.

  • 파이썬 3.x
  • TensorFlow 또는 Keras(딥 러닝 모델용)
  • NumPy(수치 연산용)
  • OpenCV (이미지 처리용)
  • Scikit-learn (최근접 이웃 검색 적용용)

pip를 사용하여 이러한 종속성을 설치할 수 있습니다.

pip install tensorflow numpy opencv-python scikit-learn

1단계: 사전 훈련된 FaceNet 모델 로드

먼저 사전 훈련된 FaceNet 모델을 로드하겠습니다. 신뢰할 수 있는 소스에서 모델을 다운로드하거나 keras-facenet 라이브러리를 통해 제공되는 모델을 사용할 수 있습니다.

from keras.models import load_model

# Load the pre-trained FaceNet model
model = load_model('facenet_keras.h5')
print("Model Loaded Successfully")

모델 로드는 얼굴 인식 시스템 설정의 첫 번째 단계입니다. 모델은 얼굴을 숫자로 표현한 이미지에 대한 임베딩을 생성하는 데 사용됩니다.

2단계: FaceNet용 이미지 전처리

FaceNet에서는 입력 이미지가 RGB 형식의 160x160픽셀일 것으로 예상합니다. 또한 픽셀 값을 모델에 입력하기 전에 정규화해야 합니다.

import cv2
import numpy as np

def preprocess_image(image_path):
    # Load the image using OpenCV
    img = cv2.imread(image_path)

    # Convert the image to RGB (FaceNet expects RGB images)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 160x160 pixels
    img = cv2.resize(img, (160, 160))

    # Normalize the pixel values
    img = img.astype('float32') / 255.0

    # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3)
    img = np.expand_dims(img, axis=0)

    return img

이 기능은 FaceNet에 필요한 이미지 전처리를 처리합니다. 이미지를 적절한 형식과 크기로 변환하여 모델이 효과적으로 작업할 수 있는 입력을 받도록 합니다.

3단계: 얼굴 임베딩 생성

다음으로 FaceNet 모델을 사용하여 전처리된 이미지에서 임베딩을 생성하겠습니다. 이러한 임베딩은 얼굴의 고유한 숫자 표현 역할을 합니다.

def get_face_embedding(model, image_path):
    # Preprocess the image
    img = preprocess_image(image_path)

    # Generate the embedding
    embedding = model.predict(img)

    return embedding

get_face_embedding 함수는 모델과 이미지 경로를 가져와서 이미지를 처리하고 임베딩을 반환합니다. 이 임베딩은 얼굴 비교에 사용할 것입니다.

4단계: 임베딩을 사용하여 얼굴 비교

두 얼굴이 일치하는지 확인하기 위해 두 얼굴 사이의 유클리드 거리를 계산하여 임베딩을 비교합니다. 거리가 특정 임계값 미만이면 얼굴이 일치하는 것으로 간주됩니다.

from numpy import linalg as LA

def compare_faces(embedding1, embedding2, threshold=0.5):
    # Compute the Euclidean distance between the embeddings
    distance = LA.norm(embedding1 - embedding2)

    # Compare the distance to the threshold
    if distance 



<p>Compare_faces 함수는 두 임베딩 사이의 거리를 계산합니다. 이 거리가 지정된 임계값(기본적으로 0.5)보다 작으면 함수는 "Face Matched"를 인쇄합니다. 그렇지 않으면 "얼굴이 다릅니다."라고 인쇄됩니다.</p>

<h2>
  
  
  5단계: 얼굴 인식 시스템 테스트
</h2>

<p>마지막으로 두 개의 이미지를 사용하여 얼굴 인식 시스템이 동일인인지 아닌지를 올바르게 식별하는지 테스트해 보겠습니다.<br>
</p>

<pre class="brush:php;toolbar:false"># Load the FaceNet model
model = load_model('facenet_keras.h5')

# Get embeddings for two images
embedding1 = get_face_embedding(model, 'face1.jpg')
embedding2 = get_face_embedding(model, 'face2.jpg')

# Compare the two faces
distance = compare_faces(embedding1, embedding2)

print(f"Euclidean Distance: {distance}")

산출

  • 얼굴이 일치하면 얼굴 일치가 표시됩니다.
  • 일치하지 않으면 다음과 같이 표시됩니다. 얼굴이 다릅니다.

추가로 두 임베딩 사이의 유클리드 거리가 인쇄됩니다.

결론

Python에서 FaceNet을 사용하여 간단하면서도 강력한 얼굴 인식 시스템을 구축했습니다. 이 시스템은 더 많은 얼굴을 포함하거나, 실시간 인식을 처리하거나, 대규모 프로젝트에 통합되도록 쉽게 확장할 수 있습니다. FaceNet의 높은 정확성과 효율성은 얼굴 인식 작업에 탁월한 선택입니다.

임계값을 자유롭게 실험해 보거나 웹캠 기반 얼굴 인식 도구와 같은 실시간 애플리케이션에서 이 시스템을 사용해 보세요.

질문이 있거나 추가 지원이 필요하면 아래에 댓글을 남겨주세요. 즐거운 코딩하세요!


위 내용은 Python에서 FaceNet을 사용하여 얼굴 인식 시스템을 구축하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Apr 01, 2025 pm 05:09 PM

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Mar 10, 2025 pm 06:48 PM

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까?한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까?Apr 01, 2025 pm 11:15 PM

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

파이썬에서 가상 환경의 목적을 설명하십시오.파이썬에서 가상 환경의 목적을 설명하십시오.Mar 19, 2025 pm 02:27 PM

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.

정규 표현이란 무엇입니까?정규 표현이란 무엇입니까?Mar 20, 2025 pm 06:25 PM

정규 표현식은 프로그래밍의 패턴 일치 및 텍스트 조작을위한 강력한 도구이며 다양한 응용 프로그램에서 텍스트 처리의 효율성을 높입니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구