찾다
백엔드 개발파이썬 튜토리얼Python에서 FaceNet을 사용하여 얼굴 인식 시스템을 구축하는 방법

How to Build a Face Recognition System Using FaceNet in Python

얼굴 인식 기술은 보안 시스템부터 소셜 미디어까지 다양한 애플리케이션에서 점점 더 널리 보급되고 있습니다. 이 작업에 가장 효과적인 모델 중 하나는 얼굴 검증, 인식, 클러스터링을 위해 설계된 딥 러닝 모델인 FaceNet입니다.

이 튜토리얼에서는 FaceNet을 사용하여 Python으로 얼굴 인식 시스템을 구축하는 방법을 보여 드리겠습니다. 모델 로딩부터 얼굴 비교까지 모든 것을 다루겠습니다. 이 가이드를 마치면 자신의 프로젝트에서 얼굴 인식을 구현하기 위한 탄탄한 기반을 갖추게 될 것입니다.

페이스넷이란 무엇입니까?

FaceNet은 얼굴을 128차원 유클리드 공간에 매핑하는 Google이 개발한 딥 러닝 모델입니다. 이러한 임베딩은 얼굴의 필수 특징을 나타내므로 높은 정확도로 얼굴을 쉽게 비교하고 인식할 수 있습니다. 기존의 얼굴 인식 방법과 달리 FaceNet은 임베딩 학습에 중점을 두어 효율성과 확장성이 뛰어납니다.

전제 조건

코드를 살펴보기 전에 다음이 설치되어 있는지 확인하세요.

  • 파이썬 3.x
  • TensorFlow 또는 Keras(딥 러닝 모델용)
  • NumPy(수치 연산용)
  • OpenCV (이미지 처리용)
  • Scikit-learn (최근접 이웃 검색 적용용)

pip를 사용하여 이러한 종속성을 설치할 수 있습니다.

pip install tensorflow numpy opencv-python scikit-learn

1단계: 사전 훈련된 FaceNet 모델 로드

먼저 사전 훈련된 FaceNet 모델을 로드하겠습니다. 신뢰할 수 있는 소스에서 모델을 다운로드하거나 keras-facenet 라이브러리를 통해 제공되는 모델을 사용할 수 있습니다.

from keras.models import load_model

# Load the pre-trained FaceNet model
model = load_model('facenet_keras.h5')
print("Model Loaded Successfully")

모델 로드는 얼굴 인식 시스템 설정의 첫 번째 단계입니다. 모델은 얼굴을 숫자로 표현한 이미지에 대한 임베딩을 생성하는 데 사용됩니다.

2단계: FaceNet용 이미지 전처리

FaceNet에서는 입력 이미지가 RGB 형식의 160x160픽셀일 것으로 예상합니다. 또한 픽셀 값을 모델에 입력하기 전에 정규화해야 합니다.

import cv2
import numpy as np

def preprocess_image(image_path):
    # Load the image using OpenCV
    img = cv2.imread(image_path)

    # Convert the image to RGB (FaceNet expects RGB images)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 160x160 pixels
    img = cv2.resize(img, (160, 160))

    # Normalize the pixel values
    img = img.astype('float32') / 255.0

    # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3)
    img = np.expand_dims(img, axis=0)

    return img

이 기능은 FaceNet에 필요한 이미지 전처리를 처리합니다. 이미지를 적절한 형식과 크기로 변환하여 모델이 효과적으로 작업할 수 있는 입력을 받도록 합니다.

3단계: 얼굴 임베딩 생성

다음으로 FaceNet 모델을 사용하여 전처리된 이미지에서 임베딩을 생성하겠습니다. 이러한 임베딩은 얼굴의 고유한 숫자 표현 역할을 합니다.

def get_face_embedding(model, image_path):
    # Preprocess the image
    img = preprocess_image(image_path)

    # Generate the embedding
    embedding = model.predict(img)

    return embedding

get_face_embedding 함수는 모델과 이미지 경로를 가져와서 이미지를 처리하고 임베딩을 반환합니다. 이 임베딩은 얼굴 비교에 사용할 것입니다.

4단계: 임베딩을 사용하여 얼굴 비교

두 얼굴이 일치하는지 확인하기 위해 두 얼굴 사이의 유클리드 거리를 계산하여 임베딩을 비교합니다. 거리가 특정 임계값 미만이면 얼굴이 일치하는 것으로 간주됩니다.

from numpy import linalg as LA

def compare_faces(embedding1, embedding2, threshold=0.5):
    # Compute the Euclidean distance between the embeddings
    distance = LA.norm(embedding1 - embedding2)

    # Compare the distance to the threshold
    if distance 



<p>Compare_faces 함수는 두 임베딩 사이의 거리를 계산합니다. 이 거리가 지정된 임계값(기본적으로 0.5)보다 작으면 함수는 "Face Matched"를 인쇄합니다. 그렇지 않으면 "얼굴이 다릅니다."라고 인쇄됩니다.</p>

<h2>
  
  
  5단계: 얼굴 인식 시스템 테스트
</h2>

<p>마지막으로 두 개의 이미지를 사용하여 얼굴 인식 시스템이 동일인인지 아닌지를 올바르게 식별하는지 테스트해 보겠습니다.<br>
</p>

<pre class="brush:php;toolbar:false"># Load the FaceNet model
model = load_model('facenet_keras.h5')

# Get embeddings for two images
embedding1 = get_face_embedding(model, 'face1.jpg')
embedding2 = get_face_embedding(model, 'face2.jpg')

# Compare the two faces
distance = compare_faces(embedding1, embedding2)

print(f"Euclidean Distance: {distance}")

산출

  • 얼굴이 일치하면 얼굴 일치가 표시됩니다.
  • 일치하지 않으면 다음과 같이 표시됩니다. 얼굴이 다릅니다.

추가로 두 임베딩 사이의 유클리드 거리가 인쇄됩니다.

결론

Python에서 FaceNet을 사용하여 간단하면서도 강력한 얼굴 인식 시스템을 구축했습니다. 이 시스템은 더 많은 얼굴을 포함하거나, 실시간 인식을 처리하거나, 대규모 프로젝트에 통합되도록 쉽게 확장할 수 있습니다. FaceNet의 높은 정확성과 효율성은 얼굴 인식 작업에 탁월한 선택입니다.

임계값을 자유롭게 실험해 보거나 웹캠 기반 얼굴 인식 도구와 같은 실시간 애플리케이션에서 이 시스템을 사용해 보세요.

질문이 있거나 추가 지원이 필요하면 아래에 댓글을 남겨주세요. 즐거운 코딩하세요!


위 내용은 Python에서 FaceNet을 사용하여 얼굴 인식 시스템을 구축하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python Switch 문은 무엇입니까?Python Switch 문은 무엇입니까?Apr 30, 2025 pm 02:08 PM

이 기사는 버전 3.10에 도입 된 Python의 새로운 "매치"진술에 대해 논의하며, 이는 다른 언어로 된 문장과 동등한 역할을합니다. 코드 가독성을 향상시키고 기존 IF-ELIF-EL보다 성능 이점을 제공합니다.

파이썬의 예외 그룹은 무엇입니까?파이썬의 예외 그룹은 무엇입니까?Apr 30, 2025 pm 02:07 PM

Python 3.11의 예외 그룹은 여러 예외를 동시에 처리하여 동시 시나리오 및 복잡한 작업에서 오류 관리를 향상시킵니다.

파이썬의 기능 주석이란 무엇입니까?파이썬의 기능 주석이란 무엇입니까?Apr 30, 2025 pm 02:06 PM

Python의 기능 주석은 유형 확인, 문서 및 IDE 지원에 대한 기능에 메타 데이터를 추가합니다. 코드 가독성, 유지 보수를 향상 시키며 API 개발, 데이터 과학 및 라이브러리 생성에 중요합니다.

파이썬의 단위 테스트는 무엇입니까?파이썬의 단위 테스트는 무엇입니까?Apr 30, 2025 pm 02:05 PM

이 기사는 파이썬의 단위 테스트, 이점 및 효과적으로 작성하는 방법에 대해 설명합니다. 테스트를 위해 UnitTest 및 Pytest와 같은 도구를 강조 표시합니다.

Python의 액세스 지정자는 무엇입니까?Python의 액세스 지정자는 무엇입니까?Apr 30, 2025 pm 02:03 PM

기사는 Python의 액세스 지정자에 대해 논의합니다. Python은 명명 규칙을 사용하여 엄격한 시행보다는 클래스 멤버의 가시성을 나타냅니다.

파이썬의 __init __ () 란 무엇이며 자기 자신은 어떻게 역할을합니까?파이썬의 __init __ () 란 무엇이며 자기 자신은 어떻게 역할을합니까?Apr 30, 2025 pm 02:02 PM

기사는 Python의 \ _ \ _ init \ _ \ _ () 메소드와 객체 속성 초기화에서 자기의 역할에 대해 설명합니다. \ _ \ _ init \ _ \ _ ()에 대한 다른 클래스 방법 및 상속의 영향도 포함됩니다.

Python의 @ClassMethod, @StaticMethod 및 인스턴스 메소드의 차이점은 무엇입니까?Python의 @ClassMethod, @StaticMethod 및 인스턴스 메소드의 차이점은 무엇입니까?Apr 30, 2025 pm 02:01 PM

이 기사는 @classmethod, @staticMethod 및 Python의 인스턴스 방법의 차이점에 대해 설명하며 속성, 사용 사례 및 이점을 자세히 설명합니다. 필요한 기능과 DA를 기반으로 올바른 메소드 유형을 선택하는 방법을 설명합니다.

요소를 파이썬 어레이에 어떻게 추가합니까?요소를 파이썬 어레이에 어떻게 추가합니까?Apr 30, 2025 am 12:19 AM

inpython, youappendElementStoalistUsingTheAppend () 메소드 1) useappend () forsinglelements : my_list.append (4) .2) useextend () 또는 = formultiplementements : my_list.extend (other_list) 또는 my_list = [4,5,6] .3) useinsert () forspecificpositions : my_list.insert (1,5) .Bearware

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는