
Die AIxiv-Kolumne ist eine Kolumne zur Veröffentlichung akademischer und technischer Inhalte auf dieser Website. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
Papiertitel: Towards Lifelong Learning of Large Language Models: A Survey Institution: Südchina University of Technology University Papieradresse: https://arxiv.org/abs/2406.06391 Projektadresse: https://github .com/ qianlima-lab/awesome-lifelong-learning-methods-for-llm
Romanklassifizierung: Einführung Es wurde ein detaillierter strukturierter Rahmen entwickelt, der die umfangreiche Literatur zum lebenslangen Lernen in 12 Szenarien unterteilt. Universelle Techniken: Gemeinsame Techniken für alle Situationen des lebenslangen Lernens wurden identifiziert und vorhanden. Die Literatur ist in verschiedene unterteilt technische Gruppen in jedem Szenario; Zukünftige Richtungen: Schwerpunkt auf einigen neuen Technologien wie Modellerweiterung und Datenauswahl, die in der Zeit vor LLM weniger erforscht wurden.
내부 지식은 지속적인 사전 훈련 및 지속적인 미세 조정을 포함한 전체 또는 부분 훈련을 통해 모델 매개변수에 새로운 지식을 흡수하는 것을 의미합니다. -
외부 지식이란 검색 기반 평생학습, 평생학습 도구 등 모델 매개변수를 업데이트하지 않고 위키피디아나 응용 프로그램 인터페이스 등 외부 리소스의 새로운 지식을 모델에 통합하는 것을 말합니다.
- 지속적인 수직 도메인 사전 훈련: 특정 수직 분야(예: 금융, 의료 등)용.
- 지속적 언어 영역 사전 학습: 자연어 및 코드 언어에 대한 지속적인 사전 학습입니다.
- 지속적인 시간 영역 사전 학습: 시간 관련 데이터(예: 시계열 데이터)에 대한 지속적인 사전 학습입니다.
- 특정 작업:
- 지속적인 텍스트 분류: 텍스트 분류 작업을 위한 지속적인 미세 조정입니다.
- 지속적인 명명된 엔터티 인식: 명명된 엔터티 인식 작업을 위한 지속적인 미세 조정입니다.
- 지속적 관계 추출: 관계 추출 작업을 위한 지속적인 미세 조정입니다.
- 지속적인 기계 번역: 기계 번역 작업을 위한 지속적인 미세 조정입니다.
- 작업 불가지론:
- 지속적인 학습 조정: 모델의 지속적인 학습은 학습 미세 조정을 통해 이루어집니다.
- 지속적인 지식 편집: 지식 업데이트를 위한 지속적인 학습입니다.
- 지속적 정렬: 새로운 작업에 모델을 정렬하기 위한 지속적인 학습입니다.
- 전체 측정: 평균 정확도(AA) 및 평균 포함 증분 정확도(AIA). AA는 모든 작업을 학습한 후 모델의 평균 성능을 의미하고, AIA는 각 작업을 학습한 후 과거 변화를 고려합니다.
- 안정성 측정: FGT(망각 측정) 및 BWT(역방향 전송) 포함. FGT는 이전 작업의 평균 성능 저하를 평가하고, BWT는 이전 작업의 평균 성능 변화를 평가합니다.
- 가소성 측정: 새로운 작업에 대한 모델 성능의 평균 향상인 순방향 전달(FWD)을 포함합니다.
Bedeutung: Diese Methode wird beim Training neuer Aufgaben verwendet. Wiederholen Sie Daten aus früheren Aufgaben, um die zu konsolidieren Erinnerung des Modells an alte Aufgaben. Normalerweise werden die wiedergegebenen Daten in einem Puffer gespeichert und zusammen mit den Daten der aktuellen Aufgabe für das Training verwendet. Dazu gehören hauptsächlich:
– Erleben Sie Wiederholungen: Reduzieren Sie das Vergessen, indem Sie einen Teil der Datenproben alter Aufgaben speichern und diese Daten für das Training beim Training neuer Aufgaben wiederverwenden.
–Generative Replay: Im Gegensatz zum Speichern alter Daten verwendet diese Methode ein generatives Modell, um Pseudobeispiele zu erstellen und so das Wissen über alte Aufgaben in das Training neuer Aufgaben einzubringen.
Abbildung: Abbildung 3 zeigt den Prozess von Aufgabe t-1 bis Aufgabe t Das Modell trainiert Aufgabe Wenn t , die alten Daten im Puffer (Eingabe t-1 ) werden verwendet.
Bedeutung: Diese Methode verhindert, dass das Modell beim Erlernen einer neuen Aufgabe alte Aufgabenparameter übermäßig anpasst, indem den Modellparametern Regularisierungsbeschränkungen auferlegt werden. Regularisierungseinschränkungen können dem Modell helfen, die Erinnerung an alte Aufgaben beizubehalten. Dazu gehören hauptsächlich:
– Gewichtsregulierung: Durch die Auferlegung zusätzlicher Einschränkungen für Modellparameter wird die Änderung wichtiger Gewichte beim Training neuer Aufgaben begrenzt und so die Integrität alter Aufgaben geschützt. Beispielsweise sind L2-Regularisierung und Elastic Weight Consolidation (EWC) gängige Techniken.
–Feature-Regularisierung: Die Regularisierung kann nicht nur auf Gewichte einwirken, sondern auch sicherstellen, dass die Feature-Verteilung zwischen neuen und alten Aufgaben stabil bleibt, indem sie die Leistung des Modells im Feature-Raum begrenzt.
Abbildung: Abbildung 3 zeigt den Prozess von Aufgabe t-1 bis Aufgabe t Das Modell trainiert Aufgabe Wenn t , Parameterregularisierung wird verwendet, um die Leistung bei Aufgabe t-1 aufrechtzuerhalten.
Bedeutung: Dieser Ansatz konzentriert sich auf die Anpassung der Modellstruktur, um neue Aufgaben nahtlos zu integrieren und gleichzeitig die Beeinträchtigung bereits erlernten Wissens zu minimieren. Es umfasst hauptsächlich die sechs Methoden in Abbildung 4:
–(a) Prompt-Tuning: Durch Hinzufügen von „Soft Prompts“ vor der Eingabe des Modells, um Modellgenerierungs- oder Klassifizierungsaufgaben zu leiten. Diese Methode erfordert nur die Anpassung einer kleinen Anzahl von Parametern (z. B. Eingabeaufforderungswörter), ohne die Grundstruktur des Modells zu ändern.
–(b) Präfix-Tuning: Fügen Sie trainierte einstellbare Parameter zum Präfixteil der Eingabesequenz hinzu. Diese Parameter werden in den Selbstaufmerksamkeitsmechanismus der Transformer-Ebene eingefügt, um dem Modell dabei zu helfen, Kontextinformationen besser zu erfassen.
–(c) Low-Rank-Adaption (LoRA, Low-Rank-Adaption): LoRA passt sich an neue Aufgaben an, indem es Low-Rank-Matrizen auf bestimmten Ebenen hinzufügt, ohne die Hauptgewichte des großen Modells zu ändern. Dieser Ansatz reduziert die Anzahl der Parameteranpassungen erheblich und behält gleichzeitig die Modellleistung bei.
–(d) Adapter: Adapter sind trainierbare Module, die zwischen verschiedenen Schichten des Modells eingefügt werden. Diese Module können sich mit einer kleinen Anzahl zusätzlicher Parameter anpassen, ohne die ursprünglichen Modellgewichte zu ändern. Wird normalerweise in den Teilen FFN (Feed Forward Network) und MHA (Multi-Head Attention) angewendet.
–(e) Mischung von Experten: Verarbeiten Sie verschiedene Eingaben durch selektive Aktivierung bestimmter „Experten“-Module, bei denen es sich um bestimmte Schichten oder Teilnetzwerke im Modell handeln kann. Das Router-Modul ist für die Entscheidung verantwortlich, welches Expertenmodul aktiviert werden muss.
–(f) Modellerweiterung: Erweitern Sie die Kapazität des Modells, indem Sie eine neue Ebene (Neue Ebene) hinzufügen und gleichzeitig die ursprüngliche Ebene (Alte Ebene) beibehalten. Dieser Ansatz ermöglicht es dem Modell, seine Kapazität schrittweise zu erhöhen, um komplexere Aufgabenanforderungen zu erfüllen.
Abbildung: Abbildung 3 zeigt den Prozess von Aufgabe t-1 bis Aufgabe t Wenn das Modell eine neue Aufgabe lernt, werden einige Parameter eingefroren. während das neu hinzugefügte Modul zum Trainieren neuer Aufgaben verwendet wird (trainierbar).
Bedeutung: Diese Methode überträgt das Wissen des alten Modells durch Wissensdestillation auf das neue Modell. Beim Training einer neuen Aufgabe lernt das neue Modell nicht nur die Daten der aktuellen Aufgabe, sondern ahmt auch die Ausgabe des alten Modells für die alte Aufgabe nach und behält so das Wissen der alten Aufgabe bei. Dazu gehören hauptsächlich:
Abbildung: Abbildung 3 zeigt den Übergang von Task t-1 zu Task t im Wenn das Modell eine neue Aufgabe trainiert, behält es das Wissen über die alte Aufgabe bei, indem es die Vorhersageergebnisse des alten Modells imitiert.
Beispiel: CorpusBrain++ verwendet eine Backbone-Adapter-Architektur und eine Erfahrungswiedergabestrategie, um wissensintensive Sprachaufgaben in der Praxis zu bewältigen. Beispiel: Med-PaLM führt anhand einer kleinen Anzahl von Beispielen die Abstimmung von Anweisungen zur Eingabeaufforderung im medizinischen Bereich ein.
Beispiel: ELLE wendet eine funktionserhaltende Modellerweiterungsstrategie an, um die Effizienz des Wissenserwerbs und der Wissensintegration zu verbessern, indem die Breite und Tiefe vorhandener vorab trainierter Sprachmodelle flexibel erweitert wird. Beispiel: LLaMA Pro zeichnet sich durch die Erweiterung des Transformer-Blocks und die Feinabstimmung mit einem neuen Korpus im allgemeinen Gebrauch sowie bei Programmier- und Mathematikaufgaben aus.
-
Beispiel: Die von Gupta et al. vorgeschlagene Strategie passt die Lernrate bei der Einführung neuer Datensätze an, um zu verhindern, dass die Lernrate während des Langzeittrainings zu niedrig ist, und verbessert so den Effekt der Anpassung an neue Datensätze.
Beispiel: RHO -1 wird mit einem Selective Language Model (SLM) trainiert, das Token priorisiert, die einen größeren Einfluss auf den Trainingsprozess haben. Beispiel: EcomGPT-CT verbessert die Modellleistung bei domänenspezifischen Aufgaben mit halbstrukturierten E-Commerce-Daten.
Beispiel: Yadav et al. verbessern die Abstimmung von Eingabeaufforderungen, indem sie einen Mechanismus zur Lehrererzwingung einführen und eine Reihe von Eingabeaufforderungen erstellen, um die Feinabstimmung des Modells bei neuen Aufgaben zu steuern. Beispiel: ModuleFormer und Lifelong-MoE verwenden einen Mix-of-Experts-Ansatz (MoE), um die Effizienz und Anpassungsfähigkeit von LLM durch Modularität und dynamisch steigende Modellkapazität zu verbessern.
-
Beispiel: Die von Ibrahim et al. vorgeschlagene Wiederaufwärmmethode hilft dem Modell, sich schneller an neue Sprachen anzupassen, indem sie die Lernrate beim Training neuer Daten erhöht.
Beispiel: Die kontinuierliche Textklassifizierungsaufgabe trainiert das Modell durch die schrittweise Einführung neuer Klassifizierungskategorien (z. B. Absicht: Übertragung -> Absicht: Kreditwürdigkeit -> Absicht: Fun Fact), damit es sich an sich ändernde Klassifizierungsanforderungen anpassen kann.
Beispiel : Die kontinuierliche Aufgabe zur Erkennung benannter Entitäten zeigt, wie nach und nach neue Entitätstypen (z. B. Athlet -> Sportmannschaft -> Politiker) eingeführt werden, während bestimmte Entitäten erkannt werden, sodass das Modell weiterhin die Erkennung alter Entitäten aufrechterhalten und gleichzeitig die Fähigkeiten neuer Entitäten erkennen kann .
Beispiel: Die Aufgabe zur kontinuierlichen Beziehungsextraktion zeigt, wie das Modell seine Fähigkeiten zur Beziehungsextraktion schrittweise erweitert, indem es kontinuierlich neue Beziehungstypen einführt (z. B. Beziehung: Gegründet von -> Beziehung: Geburtsstaat oder -provinz -> Beziehung: Land des Hauptsitzes).
Beispiel: Die kontinuierliche Wissensbearbeitungsaufgabe stellt sicher, dass die neuesten Fakten genau beantwortet werden können, indem die Wissensbasis des Modells kontinuierlich aktualisiert wird (z. B. Wer ist der Präsident der USA? -> Für welchen Verein spielt Cristiano Ronaldo derzeit? -> Wo war der letzte Winter). Olympiade stattgefunden?).
Beispiel: Die kontinuierliche maschinelle Übersetzungsaufgabe demonstriert die Anpassungsfähigkeit des Modells in einer mehrsprachigen Umgebung, indem die Übersetzungsfähigkeiten des Modells schrittweise in verschiedene Sprachen erweitert werden (z. B. Englisch -> Chinesisch, Englisch -> Spanisch, Englisch -> Französisch).
Beispiel: Die Aufgabe zur kontinuierlichen Feinabstimmung von Anweisungen trainiert die Leistungsfähigkeit des Modells in mehreren Aufgabentypen, indem nach und nach neue Befehlstypen eingeführt werden (z. B. Zusammenfassung -> Stilübertragung -> Mathematik).
Beispiel: Kontinuierlich Die Ausrichtungsaufgabe demonstriert die kontinuierlichen Lernfähigkeiten des Modells unter verschiedenen Moral- und Verhaltensstandards, indem neue Ausrichtungsziele eingeführt werden (z. B. hilfreich und harmlos -> prägnant und organisiert -> positive Stimmung).
Einführung: Mit der kontinuierlichen Zunahme der Informationen in der Welt werden sie immer größer und entwickeln sich weiter Statische Modelle, die auf historischen Daten trainiert wurden, veralten schnell schnell und sind nicht mehr in der Lage, neue Entwicklungen zu verstehen oder Inhalte darüber zu generieren. Das auf Abruf basierende lebenslange Lernen erfüllt die dringende Notwendigkeit, dass große Sprachmodelle das neueste Wissen aus externen Quellen erwerben und assimilieren müssen, und das Modell ergänzt oder aktualisiert seine Wissensbasis, indem es diese externen Ressourcen bei Bedarf abruft. Diese externen Ressourcen bieten eine große aktuelle Wissensbasis und stellen eine wichtige Ergänzung zur Verbesserung der statischen Eigenschaften vorab trainierter LLMs dar. Beispiel: Diese externen Ressourcen im Diagramm sind für das Modell zugänglich und abrufbar. Durch den Zugriff auf externe Informationsquellen wie Wikipedia, Bücher, Datenbanken usw. ist das Modell in der Lage, sein Wissen zu aktualisieren und sich anzupassen, wenn es auf neue Informationen stößt.
Einleitung: Toolbasiertes lebenslanges Lernen entsteht aus der Notwendigkeit, seine Funktionalität über statisches Wissen hinaus zu erweitern und es in die Lage zu versetzen, dynamisch mit der Umwelt zu interagieren. In realen Anwendungen müssen Modelle häufig Aufgaben ausführen, die über die direkte Textgenerierung oder -interpretation hinausgehen. Beispiel: Das Modell in der Abbildung nutzt diese Tools, um seine eigenen Fähigkeiten zu erweitern und zu aktualisieren und so lebenslanges Lernen durch Interaktion mit externen Tools zu ermöglichen. Beispielsweise können Modelle über Anwendungsprogrammierschnittstellen Echtzeitdaten abrufen oder über physische Werkzeuge mit der externen Umgebung interagieren, um bestimmte Aufgaben zu erledigen oder neues Wissen zu erwerben.
Katastrophales Vergessen: Dies ist eine der zentralen Herausforderungen des lebenslangen Lernens, und die Einführung neuer Informationen kann überschreiben was das Modell zuvor gelernt hat. Plastizität-Stabilitäts-Dilemma: Es ist sehr wichtig, ein Gleichgewicht zwischen der Aufrechterhaltung der Lernfähigkeit und der Stabilität des Modells zu finden, was sich direkt auf die Fähigkeit des Modells auswirkt, neues Wissen zu erwerben und gleichzeitig sein Wissen zu behalten breite allgemeine Fähigkeiten. Hohe Rechenkosten: Die Rechenanforderungen für die vollständige Feinabstimmung eines großen Sprachmodells können sehr hoch sein. Nichtverfügbarkeit von Modellgewichten oder vorab trainierten Daten: Aufgrund von Datenschutz, proprietären Einschränkungen oder kommerziellen Lizenzen sind rohe Trainingsdaten oder Modellgewichte oft nicht für weitere Verbesserungen verfügbar.
Von spezifischen Aufgaben zu allgemeinen Aufgaben: Die Forschung verlagert sich allmählich von der Konzentration auf spezifische Aufgaben (z. B. Textklassifizierung, Erkennung benannter Entitäten) hin zu einem breiteren Spektrum allgemeiner Aufgaben, z. B. Anleitungsoptimierung, Wissensbearbeitung usw. Von der vollständigen Feinabstimmung zur teilweisen Feinabstimmung: Angesichts des hohen Ressourcenverbrauchs der vollständigen Feinabstimmung werden teilweise Feinabstimmungsstrategien (z. B. Adapterschicht, Prompt-Tuning, LoRA) erfreuen sich immer größerer Beliebtheit. Von internem Wissen zu externem Wissen: Um die Einschränkungen häufiger interner Aktualisierungen zu überwinden, nutzen immer mehr Strategien externe Wissensquellen, wie z. B. Retrieval-Augmented Generation und Tools, die das Lernen ermöglichen um dynamisch auf aktuelle externe Daten zuzugreifen und diese zu nutzen.
Multimodales lebenslanges Lernen: Integrieren Sie mehrere über Text hinausgehende Modalitäten (z. B. Bilder, Videos, Audios, Zeitreihendaten, Wissensdiagramme) in das lebenslange Lernen, um ein umfassenderes und anpassungsfähigeres Sexualmodell zu entwickeln. Effizientes lebenslanges Lernen: Forscher arbeiten an der Entwicklung effizienterer Strategien zur Bewältigung der Rechenanforderungen von Modelltraining und -aktualisierungen, wie z. B. Modellbereinigung, Modellzusammenführung, Modellerweiterung und andere Methoden. Universelles lebenslanges Lernen: Das ultimative Ziel besteht darin, großen Sprachmodellen die Möglichkeit zu geben, sich aktiv neues Wissen anzueignen und durch dynamische Interaktion mit der Umgebung zu lernen, ohne sich mehr nur auf statische Datensätze zu verlassen.
위 내용은 200개 이상의 관련 연구를 집대성한 대형 모델 '평생 학습'의 최신 리뷰는 여기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Stanford University Institute for Human-Oriented Intificial Intelligence가 발표 한 2025 인공 지능 지수 보고서는 진행중인 인공 지능 혁명에 대한 훌륭한 개요를 제공합니다. 인식 (무슨 일이 일어나고 있는지 이해), 감사 (혜택보기), 수용 (얼굴 도전) 및 책임 (우리의 책임 찾기)의 네 가지 간단한 개념으로 해석합시다. 인지 : 인공 지능은 어디에나 있고 빠르게 발전하고 있습니다 인공 지능이 얼마나 빠르게 발전하고 확산되고 있는지 잘 알고 있어야합니다. 인공 지능 시스템은 끊임없이 개선되어 수학 및 복잡한 사고 테스트에서 우수한 결과를 얻고 있으며 1 년 전만해도 이러한 테스트에서 비참하게 실패했습니다. AI 복잡한 코딩 문제 또는 대학원 수준의 과학적 문제를 해결한다고 상상해보십시오-2023 년 이후

메타의 라마 3.2 : 멀티 모달 및 모바일 AI의 도약 Meta는 최근 AI에서 강력한 비전 기능과 모바일 장치에 최적화 된 가벼운 텍스트 모델을 특징으로하는 AI의 상당한 발전 인 Llama 3.2를 공개했습니다. 성공을 바탕으로 o

이번 주 AI 환경 : 발전의 회오리 바람, 윤리적 고려 사항 및 규제 토론. OpenAi, Google, Meta 및 Microsoft와 같은 주요 플레이어

연결의 편안한 환상 : 우리는 AI와의 관계에서 진정으로 번성하고 있습니까? 이 질문은 MIT Media Lab의 "AI (AI)를 사용하여 인간의 발전"심포지엄의 낙관적 톤에 도전했습니다. 이벤트는 절단 -EDG를 보여주었습니다

소개 차등 방정식, 최적화 문제 또는 푸리에 분석과 같은 복잡한 문제를 해결하는 과학자 또는 엔지니어라고 상상해보십시오. Python의 사용 편의성 및 그래픽 기능은 매력적이지만 이러한 작업에는 강력한 도구가 필요합니다.

메타의 라마 3.2 : 멀티 모달 AI 강국 Meta의 최신 멀티 모드 모델 인 LLAMA 3.2는 AI의 상당한 발전으로 향상된 언어 이해력, 개선 된 정확도 및 우수한 텍스트 생성 기능을 자랑합니다. 그것의 능력 t

데이터 품질 보증 : Dagster로 점검 자동화 및 큰 기대치 데이터 품질이 높다는 것은 데이터 중심 비즈니스에 중요합니다. 데이터 볼륨 및 소스가 증가함에 따라 수동 품질 관리는 비효율적이며 오류가 발생하기 쉽습니다.

메인 프레임 : AI 혁명의 이름없는 영웅 서버는 일반 목적 애플리케이션 및 여러 클라이언트를 처리하는 데 탁월하지만 메인 프레임은 대량의 미션 크리티컬 작업을 위해 구축됩니다. 이 강력한 시스템은 자주 무거움에서 발견됩니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

WebStorm Mac 버전
유용한 JavaScript 개발 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
