찾다
백엔드 개발파이썬 튜토리얼데이터 침해에 대한 응용 데이터 과학 + 보너스

안녕하세요!

오늘 저는 데이터 과학과 사이버 보안이라는 두 가지 도메인을 포함하기로 결정했습니다.

따라오시면 제가 쓴 내용을 보실 수 있습니다.
Applied Data Science on data breaches + Bonus

내가 무엇을 했나요?

조직 유형에 따른 공격 횟수 분석을 진행했습니다.
Kaggle에서 데이터세트를 다운로드했습니다.
그러다가 Jupyter Lab과 Python을 사용하여 데이터 작업을 시작했습니다.

노트북은 연습용으로, 데이터를 테스트하고 관찰하거나 가지고 놀 수 있습니다.

Applied Data Science on data breaches + Bonus

평소처럼 가장 먼저 데이터를 가져왔습니다. 그런 다음 데이터 세트를 로드하고 정리했습니다.

EDA(탐색적 데이터 분석)는 반복적이고 비순차적인 프로세스이기 때문에 데이터 정리는 더 많이 수행할 수 있는 단계입니다. 그래서 이후에도 의미 있는 인사이트를 찾아내기 위해 이 과정을 계속했습니다.

통계에 관한 몇 마디

공격 횟수를 기준으로 어떤 조직이 사이버 공격에 더 취약한지 알아보기 위해 n=40의 단순 무작위 샘플링을 선택했습니다. 단순 무작위 샘플링은 모집단의 모든 구성원이 선택될 확률이 동일하다는 것을 의미합니다.

가설

  1. 귀무가설(H0): 조직 유형별로 경험한 사이버 공격 횟수에는 큰 차이가 없습니다.

  2. 대체 가설(H1): 사이버 공격 횟수는 조직 유형에 따라 크게 다릅니다.

최대 공격 횟수 기준으로 헬스케어 업종이 6건으로 공격 가능성이 더 높은 것으로 결론지었습니다. 반면, 뱅킹은 공격 횟수가 1회로 가장 낮았습니다.

마지막으로 데이터 세트의 분포 정규성을 확인하기 위해 Shapiro-Wilk 테스트를 수행했습니다. 귀무가설이 기각되어 데이터가 정규 분포를 따르지 않는 것으로 보입니다. 나는 Kruskal-Wallis 테스트를 적용했는데 귀무 가설을 기각하지 못했습니다. 즉, 그룹 간에 유의미한 차이가 없다는 의미입니다. 간단히 말해서, 한 조직 유형이 다른 조직 유형보다 사이버 공격에 더 취약하다고 자신있게 말할 수 있는 증거가 충분하지 않다는 의미입니다.

제한 사항 및 향후 고려 사항

신뢰 수준 없음, 오차 한계 및 신뢰 구간이 설정되었습니다. 표본 크기가 작으므로 통계적으로 유의미한 차이를 탐지하기가 더 어렵습니다. 앞으로는 샘플 선택 시 이러한 단계를 존중하고 더 큰 샘플을 고려할 것입니다.

제 GitHub 페이지에서 전체 작업을 확인하실 수 있습니다. ?

보너스?

제가 명시한 대로 이 기사에는 보너스가 있습니다. 데이터 과학과 사이버 보안의 결합은 계속됩니다. TryHackMe 룸 Attacktive Directory에 대한 글을 작성했습니다!
언뜻 보면 이 주제들은 서로 관련이 없다고 말할 수 있습니다. 사실 이는 어떻게 침해가 발생할 수 있는지 보여주는 시연입니다! ? 데이터 침해는 어쨌든 그리고 어떤 이유로 나타나기 때문입니다.

궁금하시죠? 글쎄, 내 GitHub 페이지에서 내 글을 확인하세요.


당신의 생각은 무엇입니까?

위 내용은 데이터 침해에 대한 응용 데이터 과학 + 보너스의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링파이썬의 이미지 필터링Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법Python을 사용하여 PDF 문서를 사용하는 방법Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 병렬 및 동시 프로그래밍 소개파이썬의 병렬 및 동시 프로그래밍 소개Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

파이썬에서 자신의 데이터 구조를 구현하는 방법파이썬에서 자신의 데이터 구조를 구현하는 방법Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전