>백엔드 개발 >파이썬 튜토리얼 >채팅봇 만들기 - JO PARIS 4

채팅봇 만들기 - JO PARIS 4

PHPz
PHPz원래의
2024-08-27 06:04:32695검색

Create chat bot - JO PARIS 4

이 글에서는 텐서플로우를 이용해 간단한 챗봇을 만드는 방법을 보여드리겠습니다.

데이터로는 PARIS JO JO 2024의 Kaggle 데이터세트를 사용하여 훈련 단계에서 문장을 구했습니다.

내 github에서 종료 코드를 얻을 수 있습니다: https://github.com/victordalet/Kaggle_analytic/tree/feat/paris_2024_olympics


I - 기본 채팅 봇 데이터 세트

챗봇의 텐서플로우 데이터세트는 다음과 같습니다.
태그와 패턴, 그리고 다양한 반응을 찾아볼 수 있습니다.
우리의 목표는 JO 베팅 데이터세트의 다양한 시퀀스를 추가하여 이와 같은 파일에 추가하는 것입니다.

{
  "intents": [
    {
      "tag": "google",
      "patterns": [
        "google",
        "search",
        "internet"
      ],
      "responses": [
        "Redirecting to Google..."
      ]
    },

II - 데이터 처리

기본 json과 JO의 csv로 챗봇 데이터세트를 읽어서 분할 처리하여 json에 문장을 추가했습니다

import json


class CreateDataset:
    def __init__(self):
        self.json_path = 'data.json'
        self.csv_path = '../paris-2024-faq.csv'
        with open(self.json_path) as file:
            self.dataset = json.load(file)
        f = open(self.csv_path, 'r')
        dataset_split = f.read().split(";")
        question = False
        for data in dataset_split:
            if question:
                question = False
                self.dataset["intents"][-1]["responses"].append(data)

            if "?" in data:
                question = True
                self.dataset["intents"].append({
                    "tag": "",
                    "patterns": [
                        data
                    ],
                    "responses": [
                    ]
                })
        with open(self.json_path, 'w') as f:
            json.dump(self.dataset, f)

III - 훈련

교육 목적으로 tensorflow 예제를 편집했습니다.
내 코드를 사용하여 실행하려면 첫 번째 인수에 원하는 에포크 수를 추가하세요.
모델이 들어갈 저장 디렉토리를 생성하고 이 글의 시작 부분과 같이 github에 있는 class.pkl 및 word.pkl 파일을 추가하세요.

import random
import json
import pickle
import numpy as np
import sys

import nltk
from nltk.stem import WordNetLemmatizer

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import SGD


class Train:
    words: list
    classes: list
    documents: list
    ignore_letters: list
    training: list
    output_empty: list
    train_x: list
    train_y: list
    model: Sequential
    epochs: int

    def __init__(self):
        self.lemmatizer = WordNetLemmatizer()
        self.intents = json.loads(open('data.json').read())
        self.words = []
        self.classes = []
        self.documents = []
        self.training = []
        self.ignore_letters = ['?', '!']
        self.epochs = int(sys.argv[1])

    def run(self):
        self.download_nltk_data()
        self.load_training_data()
        self.prepare_training_data()
        self.build_neural_network()
        self.train()

    @staticmethod
    def download_nltk_data():
        nltk.download('punkt')
        nltk.download('wordnet')

    def load_training_data(self):
        for intent in self.intents['intents']:
            for pattern in intent['patterns']:
                word_list = nltk.word_tokenize(pattern)
                self.words.extend(word_list)
                self.documents.append((word_list, intent['tag']))
                if intent['tag'] not in self.classes:
                    self.classes.append(intent['tag'])

    def prepare_training_data(self):
        self.words = [self.lemmatizer.lemmatize(word)
                      for word in self.words
                      if word not in self.ignore_letters]

        self.words = sorted(set(self.words))
        self.classes = sorted(set(self.classes))
        pickle.dump(self.words, open('saves/words.pkl', 'wb'))
        pickle.dump(self.classes, open('saves/classes.pkl', 'wb'))

        self.output_empty = [0] * len(self.classes)
        for document in self.documents:
            bag = []
            word_patterns = document[0]
            word_patterns = [self.lemmatizer.lemmatize(word.lower())
                             for word in word_patterns]
            for word in self.words:
                bag.append(1) if word in word_patterns else bag.append(0)

            output_row = list(self.output_empty)
            output_row[self.classes.index(document[1])] = 1
            self.training.append([bag, output_row])

        random.shuffle(self.training)
        self.training = np.array(self.training)

        self.train_x = list(self.training[:, 0])
        self.train_y = list(self.training[:, 1])

    def build_neural_network(self):
        self.model = Sequential()
        self.model.add(Dense(128, input_shape=(len(self.train_x[0]),),
                             activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(64, activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(len(self.train_y[0]), activation='softmax'))

        sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
        self.model.compile(loss='categorical_crossentropy',
                           optimizer=sgd,
                           metrics=['accuracy'])

    def train(self):
        self.model.fit(np.array(self.train_x),
                       np.array(self.train_y),
                       epochs=self.epochs,
                       batch_size=5,
                       verbose=1)
        self.model.save('saves/chatbot_model.model')


if __name__ == "__main__":
    Train().run()

IV - 테스트

임의의 메시지를 받는 테스트 메서드를 사용하여 ChatBot 클래스를 만듭니다.
get_response 메소드를 사용하여 이 챗봇을 애플리케이션에 추가할 수 있습니다. 예를 들어 웹사이트에 챗봇을 두기 위해 플라스크 API의 내 프로젝트 중 하나에서 이를 호출합니다.

import random
import json
import pickle
import numpy as np

import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import load_model


class ChatBot:
    lemmatizer: WordNetLemmatizer
    intents: dict
    words: list
    classes: list
    model: load_model
    ERROR_THRESHOLD = 0.25

    def __init__(self):
        self.download_nltk_data()
        self.lemmatizer = WordNetLemmatizer()
        self.intents = json.loads(open('data.json').read())
        self.words = pickle.load(open('saves/words.pkl', 'rb'))
        self.classes = pickle.load(open('saves/classes.pkl', 'rb'))
        self.model = load_model('saves/chatbot_model.model')

    @staticmethod
    def download_nltk_data():
        nltk.download('punkt')
        nltk.download('wordnet')

    def clean_up_sentence(self, sentence):
        sentence_words = nltk.word_tokenize(sentence)
        sentence_words = [self.lemmatizer.lemmatize(word)
                          for word in sentence_words]
        return sentence_words

    def bag_of_words(self, sentence):
        sentence_words = self.clean_up_sentence(sentence)
        bag = [0] * len(self.words)
        for w in sentence_words:
            for i, word in enumerate(self.words):
                if word == w:
                    bag[i] = 1
        return np.array(bag)

    def predict_class(self, sentence):
        bow = self.bag_of_words(sentence)
        res = self.model.predict(np.array([bow]))[0]
        results = [[i, r]
                   for i, r in enumerate(res)
                   if r > self.ERROR_THRESHOLD]
        results.sort(key=lambda x: x[1], reverse=True)
        return_list = []
        for r in results:
            return_list.append({'intent': self.classes[r[0]],
                                'probability': str(r[1])})
        return return_list

    def get_response(self, intents_list):
        intents_json = self.intents
        tag = intents_list[0]['intent']
        list_of_intents = intents_json['intents']
        for i in list_of_intents:
            if i['tag'] == tag:
                result = random.choice(i['responses'])
                break
        return result

    def test(self):
        while True:
            message = input("")
            ints = self.predict_class(message)
            res = self.get_response(ints)
            print(res)

위 내용은 채팅봇 만들기 - JO PARIS 4의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.