데이터가 수집되고 저장되면 의미 있는 이해를 도출하기 위한 분석이 필요합니다. 이것이 탐색적 데이터 분석(EDA)이 작동하는 이유입니다. 이름에서 알 수 있듯이 우리는 데이터를 '탐색'하고 있습니다. 즉, 데이터에 대한 일반적인 개요를 얻고 있습니다.
수집되는 데이터는 텍스트, 동영상, 이미지일 수 있으며 일반적으로 구조화되지 않은 방식으로 저장됩니다. 100% 깨끗한 데이터, 즉 변칙이 없는 데이터는 거의 찾을 수 없습니다. 또한 데이터는 Excel, CSV(쉼표로 구분된 값), Json, Parquet 등
과 같은 다양한 형식일 수 있습니다.데이터 세계에서 EDA는 데이터 조작 또는 데이터 클리닝이라고도 합니다. 업계 실무자들은 '정크'를 제거하기 위한 데이터 정리의 중요성을 강조합니다. 이는 결과와 예측에 부정적인 영향을 미칠 수 있기 때문입니다. 일반적으로 표 형식의 구조화된 데이터는 여러 기술과 도구(예: Excel, Power BI, SQL)를 사용하여 분석할 수 있지만 여기서는 Python에 중점을 두고 설명하겠습니다.
Python을 사용한 EDA
Python 프로그래밍 언어는 금융, 교육, 의료, 광업, 숙박업 등 다양한 산업 분야에서 사용할 수 있는 다양성으로 인해 EDA에서 가장 널리 사용되는 도구 중 하나입니다.
내장된 라이브러리, 즉 Pandas 및 NumPy는 이 점에서 매우 효과적이며 전반적으로 작동합니다(Anaconda/Jupyter Notebook, Google Collab 또는 Visual Studio와 같은 IDE 사용 여부)
다음은 EDA를 수행할 때 실행 가능한 일반적인 단계와 코드 라인입니다.
먼저 조작/분석에 필요한 Python 라이브러리를 가져옵니다.
Panda를 PD로 가져오기
numpy를 np로 가져오기
두 번째로 데이터 세트를 로드합니다
df = pd.read_excel('파일 경로')
참고: df는 표 형식의 데이터를 데이터 프레임으로 변환하는 표준 함수입니다.
로드되면 다음 코드를 사용하여 데이터를 미리 볼 수 있습니다.
df.head()
이렇게 하면 데이터 세트의 처음 5개 행이 표시됩니다
또는 간단히 df를 실행하면 전체 데이터 세트에서 선택된 몇 개의 행(상단 및 하단 모두)과 그 안의 모든 열이 표시됩니다.
셋째, 다음을 사용하여 모든 데이터 유형을 이해합니다.
df.info()
참고: 데이터 유형에는 정수(정수), 부동 소수점(소수) 또는 객체(정성적 데이터/설명 단어)가 포함됩니다.
이 단계에서는 다음을 사용하여 데이터의 요약 통계를 얻는 것이 좋습니다.
df.describe()
평균, 최빈값, 표준 편차, 최대값/최소값 및 사분위수와 같은 통계를 제공합니다.
넷째, 다음을 사용하여 데이터세트에 null 값이 존재하는지 식별합니다.
df.isnull()
이후 중복 항목(반복 항목)을 확인할 수 있습니다.
df.duplicated()
EDA의 또 다른 주요 측면은 데이터세트의 다양한 변수가 서로 어떻게 연관되어 있는지(상관관계) 및 분포를 확인하는 것입니다.
상관관계는 양수 또는 음수일 수 있으며 범위는 -1에서 1까지입니다. 해당 코드는 다음과 같습니다.
df.corr()
참고: 1에 가까운 상관관계 수치는 강한 양의 상관관계를 나타내고, -1에 가까운 수치는 강한 음의 상관관계.
분포는 데이터의 대칭 또는 비대칭뿐만 아니라 데이터의 왜도를 확인하며 정규, 이항, 베르누이 또는 푸아송.
요약하자면 탐색적 데이터 분석은 데이터를 더 잘 이해하는 데 중요한 과정입니다. 이를 통해 더 나은 시각화와 모델 구축이 가능해졌습니다.
위 내용은 데이터 이해: 탐색적 데이터 분석(EDA)의 필수 요소.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
