찾다
기술 주변기기일체 포함PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요?

2023년에는 AI의 거의 모든 분야가 전례 없는 속도로 진화하고 있습니다. 동시에 AI는 구현 지능, 자율 주행 등 핵심 트랙의 기술적 한계를 지속적으로 확장하고 있습니다. 멀티모달 추세 하에서 Transformer는 대형 AI 모델의 주류 아키텍처로 흔들릴까요? MoE(Mixture of Experts) 아키텍처를 기반으로 한 대형 모델 탐색이 업계에서 새로운 트렌드가 된 이유는 무엇입니까? LVM(Large Vision Model)이 일반 시력 분야에서 새로운 돌파구가 될 수 있을까요? ...지난 6개월 동안 공개된 본 사이트의 2023 PRO 회원 뉴스레터에서 위 분야의 기술 동향과 산업 변화에 대한 심층 분석을 제공하는 10가지 특별 해석을 선택하여 새로운 환경에서 귀하의 목표를 달성하는 데 도움을 드립니다. 년. 준비하세요. 이 해석은 2023 Week50 업계 뉴스레터 ?

PRO | 为什么基于 MoE 的大模型更值得关注?

특별 해석 MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요?

날짜: 12월 12일

이벤트: Mistral AI는 MoE(Mixture-of-Experts, Expert Mixture) 아키텍처를 기반으로 하는 Mixtral 8x7B 모델을 오픈소스화했으며 성능은 Llama 2 70B 및 GPT-3.5" 이벤트 수준에 도달했습니다.

먼저 MoE가 무엇인지, 그 내용을 알아보겠습니다

1. 개념:

MoE(Mixture of Experts)는 여러 하위 모델(예: 전문가)로 구성된 하이브리드 모델입니다. , 각 하위 모델 입력 공간의 하위 집합을 전문적으로 처리하는 로컬 모델입니다. MoE의 핵심 아이디어는 게이팅 네트워크를 사용하여 각 데이터별로 어떤 모델을 학습해야 하는지 결정하여 간의 간섭을 완화하는 것입니다.

2. 주요 구성 요소:

혼합 전문가 모델 기술(MoE)은 전문가 모델과 게이트 모델로 구성된 스파스 게이트로 제어되는 딥 러닝 기술입니다. 각 모델은 자신이 가장 잘하는 작업에 집중하여 모델의 희소성을 달성합니다.

① Gated 네트워크의 교육에서는 각 샘플이 한 명 이상의 전문가에게 할당됩니다. ;
② 전문가 네트워크의 교육에서는 각 전문가가 할당된 샘플의 오류를 최소화하도록 교육됩니다.

3 MoE의 "전임자"는 Ensemble Learning입니다. . 앙상블 학습은 동일한 문제를 해결하기 위해 여러 모델(기본 학습자)을 훈련하고 단순히 예측(예: 투표 또는 평균화)을 결합하는 프로세스입니다. 앙상블 학습의 주요 목표는 과적합을 줄이고 일반화 능력을 향상시켜 예측 성능을 향상시키는 것입니다. 일반적인 앙상블 학습 방법에는 Bagged, Boosting 및 Stacking이 있습니다.

4. MoE 역사적 출처:

① MoE의 뿌리는 1991년 논문 "Adaptive Mixture of Local Experts"로 거슬러 올라갑니다. 이 아이디어는 입력 공간의 서로 다른 영역을 전문으로 하는 각 개별 네트워크 또는 전문가와 함께 서로 다른 하위 네트워크로 구성된 시스템에 대한 감독 프로세스를 제공하는 것을 목표로 한다는 점에서 앙상블 접근 방식과 유사합니다. 각 전문가의 가중치는 게이트 네트워크를 통해 결정됩니다. 교육 과정에서 전문가와 게이트키퍼 모두 교육을 받습니다.

② 2010년부터 2015년 사이에 두 가지 다른 연구 영역이 MoE의 추가 개발에 기여했습니다.

하나는 구성 요소로서의 전문가입니다. 전통적인 MoE 설정에서 전체 시스템은 게이트 네트워크와 여러 전문가로 구성됩니다. 전체 모델로서의 MoE는 지원 벡터 머신, 가우스 프로세스 및 기타 방법에서 탐색되었습니다. "전문가의 심층 혼합에서 학습 요소 표현"이라는 작업은 더 깊은 네트워크의 구성 요소로서 MoE의 가능성을 탐구합니다. 이를 통해 모델은 동시에 크고 효율적이 될 수 있습니다.

다른 하나는 조건부 계산입니다. 기존 네트워크는 각 레이어를 통해 모든 입력 데이터를 처리합니다. 이 기간 동안 Yoshua Bengio는 입력 토큰을 기반으로 구성 요소를 동적으로 활성화하거나 비활성화하는 방법을 조사했습니다.

3 결과적으로 사람들은 자연어 처리의 맥락에서 전문적인 혼합 모델을 탐색하기 시작했습니다. "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer"라는 논문에서는 희소성을 도입하여 137B LSTM으로 확장하여 대규모에서 빠른 추론을 달성했습니다.

국토부 기반 대형 모델이 주목받는 이유는 무엇인가요?

1. 일반적으로 모델 규모의 확장은 학습 비용의 상당한 증가로 이어질 것이며, 컴퓨팅 리소스의 한계는 대규모 집중 모델 학습에 병목 현상이 되었습니다. 이 문제를 해결하기 위해 희소 MoE 레이어 기반의 딥러닝 모델 아키텍처가 제안됩니다.

2. MoE(Sparse Mixed Expert Model)는 추론 비용을 늘리지 않고 LLM(대형 언어 모델)에 학습 가능한 매개변수를 추가할 수 있는 특수 신경망 아키텍처이며, 명령 조정(Instruction Tuning)은 LLM이 지침을 따르도록 훈련시키는 기술입니다. .

3. MoE+ 교육 미세 조정 기술의 결합은 언어 모델의 성능을 크게 향상시킬 수 있습니다. 2023년 7월, Google, UC Berkeley, MIT 및 기타 기관의 연구자들은 "Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models"라는 논문을 발표하여 하이브리드 전문가 모델(MoE)과 명령어 튜닝이 입증되었습니다. 이러한 조합을 통해 LLM(대형 언어 모델)의 성능이 크게 향상될 수 있습니다.

① 구체적으로 연구원들은 명령이 미세 조정된 희소 하이브리드 전문가 모델 FLAN-MOE 세트에서 희소 활성화 MoE를 사용하고, 더 나은 모델 용량과 컴퓨팅 성능을 제공하기 위해 Transformer 계층의 피드포워드 구성 요소를 MoE 계층으로 대체했습니다. 둘째, FLAN 집단 데이터 세트를 기반으로 FLAN-MOE를 미세 조정합니다.

② 위의 방법을 바탕으로 연구원들은 명령어 튜닝 없이 단일 다운스트림 작업에 대한 직접 미세 조정, 명령어 튜닝 후 다운스트림 작업에 대한 In-Context Few-Shot 또는 Zero-Shot 일반화를 연구했으며, 명령어 튜닝에서는 단일 다운스트림 작업을 추가로 미세 조정하고 세 가지 실험 설정에서 LLM의 성능 차이를 비교합니다.

3 실험 결과에 따르면 명령 조정을 사용하지 않으면 MoE 모델이 유사한 계산 능력을 갖춘 밀도 모델보다 성능이 떨어지는 경우가 많습니다. 그러나 지시적 튜닝과 결합하면 상황이 달라집니다. 명령어 조정 MoE 모델(Flan-MoE)은 MoE 모델이 밀도 모델에 비해 계산 비용이 1/3에 불과하더라도 여러 작업에서 더 큰 밀도 모델보다 성능이 뛰어납니다. 밀도가 높은 모델과 비교. MoE 모델은 명령 조정을 통해 더욱 중요한 성능 향상을 얻습니다. 따라서 컴퓨팅 효율성과 성능을 고려할 때 MoE는 대규모 언어 모델 훈련을 위한 강력한 도구가 될 것입니다.

4. 이번에 출시된 Mixtral 8x7B 모델도 Sparse Mixed Expert Network를 사용합니다.

① Mixtral 8x7B는 디코더 전용 모델입니다. 피드포워드 모듈은 8개의 서로 다른 매개변수 세트 중에서 선택합니다. 네트워크의 각 계층에서 각 토큰에 대해 라우터 네트워크는 8개 그룹(전문가) 중 2개를 선택하여 토큰을 처리하고 해당 출력을 집계합니다.

② Mixtral 8x7B 모델은 추론 속도가 6배 더 빠르며 대부분의 벤치마크에서 Llama 2 70B 및 GPT3.5와 일치하거나 그보다 성능이 뛰어납니다.

MoE의 중요한 장점: 희소성이란 무엇인가요?

1. 기존의 밀집 모델에서는 각 입력을 전체 모델에서 계산해야 합니다. 희소 혼합 전문가 모델에서는 입력 데이터를 처리할 때 소수의 전문가 모델만 활성화되어 사용되는 반면, 대부분의 전문가 모델은 비활성 상태입니다. 그리고 희소성은 혼합 전문가의 중요한 측면입니다. 모델의 장점은 모델 훈련 및 추론 프로세스의 효율성을 높이는 열쇠이기도 합니다

PRO | 为什么基于 MoE 的大模型更值得关注?

.

위 내용은 PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法Sep 07, 2023 pm 11:21 PM

本文将介绍一种通过BEVSketch布局来精确生成多视角街景图片的方法在自动驾驶领域,图像合成被广泛应用于提升下游感知任务的性能在计算机视觉领域,提升感知模型性能的一个长期存在的研究难题是通过合成图像来实现。在以视觉为中心的自动驾驶系统中,使用多视角摄像头,这个问题变得更加突出,因为有些长尾场景是永远无法收集到的根据图1(a)所示,现有的生成方法将语义分割风格的BEV结构输入生成网络,并输出合理的多视角图像。在仅根据场景级指标进行评估时,现有方法似乎能合成照片般逼真的街景图像。然而,一旦放大,我

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구