매장 영수증 추출을 위해 Pydantic 모델과 함께 LlamaExtract 사용
이 기사에서는 상점 영수증에서 구조화된 데이터를 추출하기 위해 Pydantic 모델의 스키마와 통합된 LlamaExtract를 사용하는 방법을 살펴보겠습니다. 이러한 접근 방식을 통해 영수증 정보를 체계적으로 정리하여 분석 및 관리가 더욱 쉬워집니다.
설정
먼저 라마 추출 클라이언트 라이브러리가 설치되어 있는지 확인하세요. 다음 명령을 사용하십시오:
pip install llama-extract pydantic
참고: pip 업데이트에 대한 알림이 표시되면 제공된 명령을 사용하여 업데이트할 수 있습니다.
먼저 로그인하고 Llama Index Cloud에서 무료로 API 키를 받으세요
LlamaExtract API 키에 대한 환경 변수를 설정합니다.
import os os.environ["LLAMA_CLOUD_API_KEY"] = "YOUR LLAMA INDEX CLOUD API HERE"
데이터 로드
이 예에서는 PDF 형식의 매장 영수증 데이터세트가 있다고 가정해 보겠습니다. 이러한 파일을 영수증이라는 디렉토리에 넣으세요.
DATA_DIR = "data/receipts" fnames = os.listdir(DATA_DIR) fnames = [fname for fname in fnames if fname.endswith(".pdf")] fpaths = [os.path.join(DATA_DIR, fname) for fname in fnames] fpaths
출력에는 영수증의 파일 경로가 나열되어야 합니다.
['data/receipts/receipt.pdf']
Pydantic 모델 정의
우리는 Pydantic을 사용하여 데이터 모델을 정의할 것입니다. 이는 우리가 예상하거나 PDF에서 추출하려는 필드/데이터를 API에 알려줍니다. 매장 영수증의 경우 매장명, 날짜, 총액, 구매한 품목 목록을 추출하는 데 관심이 있을 수 있습니다.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str quantity: int price: float class Receipt(BaseModel): store_name: str date: str total_amount: float items: List[Item]
스키마 생성
이제 Pydantic 모델을 사용하여 LlamaExtract에서 추출 스키마를 정의할 수 있습니다.
from llama_extract import LlamaExtract extractor = LlamaExtract(verbose=True) schema_response = await extractor.acreate_schema("Receipt Schema", data_schema=Receipt) schema_response.data_schema
출력 스키마는 다음과 유사해야 합니다.
{ 'type': 'object', '$defs': { 'Item': { 'type': 'object', 'title': 'Item', 'required': ['name', 'quantity', 'price'], 'properties': { 'name': {'type': 'string', 'title': 'Name'}, 'quantity': {'type': 'integer', 'title': 'Quantity'}, 'price': {'type': 'number', 'title': 'Price'} } } }, 'title': 'Receipt', 'required': ['store_name', 'date', 'total_amount', 'items'], 'properties': { 'store_name': {'type': 'string', 'title': 'Store Name'}, 'date': {'type': 'string', 'title': 'Date'}, 'total_amount': {'type': 'number', 'title': 'Total Amount'}, 'items': { 'type': 'array', 'title': 'Items', 'items': {'$ref': '#/$defs/Item'} } } }
추출 실행
스키마를 정의하면 이제 영수증 파일에서 구조화된 데이터를 추출할 수 있습니다. Receipt를 응답 모델로 지정하여 추출된 데이터가 검증되고 구조화되었는지 확인합니다.
responses = await extractor.aextract( schema_response.id, fpaths, response_model=Receipt )
필요한 경우 원시 JSON 출력에 액세스할 수 있습니다.
data = responses[0].data print(data)
JSON 출력 예:
{ 'store_name': 'ABC Electronics', 'date': '2024-08-05', 'total_amount': 123.45, 'items': [ {'name': 'Laptop', 'quantity': 1, 'price': 999.99}, {'name': 'Mouse', 'quantity': 1, 'price': 25.00}, {'name': 'Keyboard', 'quantity': 1, 'price': 50.00} ] }
결론
이 기사에서는 데이터 스키마를 정의하고 매장 영수증에서 구조화된 데이터를 추출하기 위해 Pydantic 모델과 함께 LlamaExtract를 사용하는 방법을 시연했습니다. 이 접근 방식을 사용하면 추출된 정보가 잘 정리되고 검증되므로 처리 및 분석이 더 쉬워집니다.
이는 다양한 사례, 송장, 영수증, 보고서 등에 사용할 수도 있습니다.
즐거운 코딩하세요!!
프로젝트가 있나요? 저에게 이메일을 보내주세요??: wilbertmisingo@gmail.com
질문이 있거나 내 게시물에 대해 가장 먼저 알고 싶으신가요?-
LinkedIn에서 나를 ✅ 팔로우하세요 ?
Twitter/X에서 나를 팔로우 하시겠습니까?
위 내용은 AI를 사용하여 구조적 출력을 위한 가장 빠르고 정확한 송장 데이터 추출기를 만듭니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

WebStorm Mac 버전
유용한 JavaScript 개발 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
