Beautiful Soup은 웹페이지에서 데이터를 스크랩하는 데 사용되는 Python 라이브러리입니다. HTML 및 XML 문서를 구문 분석하기 위한 구문 분석 트리를 생성하여 원하는 정보를 쉽게 추출할 수 있습니다.
Beautiful Soup은 웹 스크래핑을 위한 몇 가지 주요 기능을 제공합니다.
- 구문 분석 트리 탐색: 분석 트리를 쉽게 탐색하고 요소, 태그 및 속성을 검색할 수 있습니다.
- 구문 분석 트리 수정: 태그와 속성을 추가, 제거, 업데이트하는 등 구문 분석 트리를 수정할 수 있습니다.
- 출력 형식: 구문 분석 트리를 다시 문자열로 변환하여 수정된 콘텐츠를 쉽게 저장할 수 있습니다.
뷰티플수프를 사용하려면 lxml이나 html.parser 등의 파서와 함께 라이브러리를 설치해야 합니다. pip를 사용하여 설치할 수 있습니다
#Install Beautiful Soup using pip. pip install beautifulsoup4 lxml
페이지 매김 처리
여러 페이지에 걸쳐 콘텐츠를 표시하는 웹사이트를 처리할 때 페이지 매김 처리는 모든 데이터를 긁어내는 데 필수적입니다.
- 페이지 매김 구조 식별: 웹사이트를 검사하여 페이지 매김 구조를 이해하세요(예: 다음 페이지 버튼 또는 번호가 매겨진 링크).
- 페이지 반복: 루프를 사용하여 각 페이지를 반복하고 데이터를 스크랩합니다.
- URL 또는 매개변수 업데이트: 다음 페이지의 콘텐츠를 가져오려면 URL 또는 매개변수를 수정하세요.
import requests from bs4 import BeautifulSoup base_url = 'https://example-blog.com/page/' page_number = 1 all_titles = [] while True: # Construct the URL for the current page url = f'{base_url}{page_number}' response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') # Find all article titles on the current page titles = soup.find_all('h2', class_='article-title') if not titles: break # Exit the loop if no titles are found (end of pagination) # Extract and store the titles for title in titles: all_titles.append(title.get_text()) # Move to the next page page_number += 1 # Print all collected titles for title in all_titles: print(title)
중첩된 데이터 추출
추출해야 하는 데이터가 여러 태그 레이어 내에 중첩되어 있는 경우가 있습니다. 중첩된 데이터 추출을 처리하는 방법은 다음과 같습니다.
- 상위 태그로 이동: 중첩된 데이터가 포함된 상위 태그를 찾습니다.
- 중첩 태그 추출: 각 상위 태그 내에서 중첩 태그를 찾아서 추출합니다.
- 중첩 태그를 통해 반복: 중첩 태그를 반복하여 필요한 정보를 추출합니다.
import requests from bs4 import BeautifulSoup url = 'https://example-blog.com/post/123' response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') # Find the comments section comments_section = soup.find('div', class_='comments') # Extract individual comments comments = comments_section.find_all('div', class_='comment') for comment in comments: # Extract author and content from each comment author = comment.find('span', class_='author').get_text() content = comment.find('p', class_='content').get_text() print(f'Author: {author}\nContent: {content}\n')
AJAX 요청 처리
많은 최신 웹사이트에서는 AJAX를 사용하여 데이터를 동적으로 로드합니다. AJAX를 처리하려면 브라우저 개발자 도구를 사용하여 네트워크 요청을 모니터링하고 스크래퍼에서 해당 요청을 복제하는 등 다양한 기술이 필요합니다.
import requests from bs4 import BeautifulSoup # URL to the API endpoint providing the AJAX data ajax_url = 'https://example.com/api/data?page=1' response = requests.get(ajax_url) data = response.json() # Extract and print data from the JSON response for item in data['results']: print(item['field1'], item['field2'])
웹 스크래핑의 위험
웹 스크래핑에는 법적, 기술적, 윤리적 위험을 신중하게 고려해야 합니다. 적절한 보호 장치를 구현하면 이러한 위험을 완화하고 책임감 있고 효과적으로 웹 스크래핑을 수행할 수 있습니다.
- 서비스 약관 위반: 많은 웹사이트에서는 서비스 약관(ToS)에서 스크래핑을 명시적으로 금지합니다. 본 약관을 위반할 경우 법적 조치를 받을 수 있습니다.
- 지적재산권 문제: 콘텐츠를 무단으로 스크랩할 경우 지적재산권이 침해되어 법적 분쟁이 발생할 수 있습니다.
- IP 차단: 웹사이트는 스크래핑 동작을 보이는 IP 주소를 감지하고 차단할 수 있습니다.
- 계정 차단: 사용자 인증이 필요한 웹사이트에서 스크래핑을 수행할 경우, 스크래핑에 사용된 계정이 차단될 수 있습니다.
Beautiful Soup은 HTML 및 XML 문서 탐색 및 검색을 위한 사용하기 쉬운 인터페이스를 제공하여 웹 스크래핑 프로세스를 단순화하는 강력한 라이브러리입니다. 다양한 구문 분석 작업을 처리할 수 있으므로 웹에서 데이터를 추출하려는 모든 사람에게 필수적인 도구입니다.
위 내용은 Beautiful Soup을 사용하여 공개 웹에서 데이터를 추출하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Python은 인터넷에서 파일을 다운로드하는 다양한 방법을 제공하며 Urllib 패키지 또는 요청 도서관을 사용하여 HTTP를 통해 다운로드 할 수 있습니다. 이 튜토리얼은 이러한 라이브러리를 사용하여 Python의 URL에서 파일을 다운로드하는 방법을 설명합니다. 도서관을 요청합니다 요청은 Python에서 가장 인기있는 라이브러리 중 하나입니다. URL에 쿼리 문자열을 수동으로 추가하지 않고 HTTP/1.1 요청을 보낼 수 있습니다. 요청 라이브러리는 다음을 포함하여 많은 기능을 수행 할 수 있습니다. 양식 데이터 추가 다중 부문 파일을 추가하십시오 파이썬 응답 데이터에 액세스하십시오 요청하십시오 머리

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

NLP (Natural Language Processing)는 인간 언어의 자동 또는 반자동 처리입니다. NLP는 언어학과 밀접한 관련이 있으며인지 과학, 심리학, 생리학 및 수학에 대한 연구와 관련이 있습니다. 컴퓨터 과학에서

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
