시간 복잡도 함정에 주의하세요
여기에 쓰세요
한 빌리빌리 비디오에도 이런 내용이 나와 있습니다: [Bilibili Video][https://www.bilibili.com/video/BV16u4m1c7cU/?spm_id_from=333.999.0.0] 좋은 비디오인 것 같은데 언어가 중국어예요.
시간 복잡도
- 시간 복잡도는 무엇을 의미하나요?
시간 복잡도는 입력 크기에 따라 알고리즘이 실행되는 데 걸리는 시간을 측정한 것입니다. 알고리즘의 효율성을 설명하는 방법으로, 서로 다른 알고리즘을 비교하여 어떤 알고리즘이 가장 효율적인지 판단하는 데 사용됩니다.
시간복잡도는 어떻게 계산하나요?
시간 복잡도를 계산하려면 알고리즘이 수행하는 작업 수를 입력 크기의 함수로 고려해야 합니다. 작업 횟수를 측정하는 가장 일반적인 방법은 특정 작업이 수행된 횟수를 세는 것입니다.
시간 복잡도를 계산할 때 흔히 저지르는 실수는 무엇입니까?
- 입력 크기를 고려하지 않음: 알고리즘이 수행하는 작업 수만 고려하면 시간 복잡도를 과소평가할 수 있습니다. 예를 들어, 루프가 실행되는 횟수를 계산하지만 입력 크기를 고려하지 않으면 시간 복잡도가 너무 높아질 수 있습니다.
- 알고리즘의 효율성을 고려하지 않음: 일부 알고리즘은 입력 크기가 작더라도 많은 작업을 수행할 수 있어 시간 복잡도가 높아질 수 있습니다. 예를 들어, 버블 정렬 및 선택 정렬과 같은 정렬 알고리즘은 작은 배열에서 두 요소만 교체하면 되지만 2차 시간 복잡도를 갖습니다.
- 알고리즘의 최악의 시나리오를 고려하지 않음: 일부 알고리즘에는 최악의 시나리오보다 더 적은 작업을 수행하는 최상의 시나리오가 있습니다. 예를 들어 이진 검색과 같은 검색 알고리즘에는 로그 시간 내에 대상 요소를 찾는 최상의 시나리오가 있지만 배열의 모든 요소를 검사해야 하는 최악의 시나리오가 있습니다.
시간 복잡도의 몇 가지 예를 살펴보겠습니다.
여기 질문이 있습니다:
목록에서 최대 10개의 정수를 찾으세요.
import random ls = [random.randint(1, 100) for _ in range(n)]
테스트 기능은 다음과 같습니다.
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start
해결 방법 1: 힙 사용
heapq 모듈을 사용하는 솔루션은 다음과 같습니다.
def find_max_n(ls, n): import heapq return heapq.nlargest(n, ls)
또는 Python 방식으로 작성합니다.
def find_largest_n(nums, n): if n max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left heap[largest]: largest = left if right heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest)
해결 방법 2: 정렬 사용
정렬 기능을 사용하는 솔루션은 다음과 같습니다.
def find_max_n(ls, n): return sorted(ls, reverse=True)[:n]
힙의 시간 복잡도는 O(n log k)이고 정렬 기능의 시간 복잡도는 O(n log n)라는 사실은 대부분의 사람들이 알고 있습니다.
첫 번째 솔루션이 두 번째 솔루션보다 나은 것 같습니다. 하지만 파이썬에서는 그렇지 않습니다.
최종 코드 보기:
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start def find_max_n_heapq(ls, n): import heapq return heapq.nlargest(n, ls) def find_max_n_python_heap(nums, n): if n max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left heap[largest]: largest = left if right heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest) def find_max_n_sorted(ls, n): return sorted(ls, reverse=True)[:n] # test import random for n in range(10, 10000, 100): ls = [random.randint(1, 100) for _ in range(n)] print(f"n = {n}") print(f"Use Heapq: {benchmark(find_max_n_heapq, ls, n)}") print(f"Python Heapq: {benchmark(find_max_n_python_heap, ls, n)}") print(f"Sorted : {benchmark(find_max_n_sorted, ls, n)}")
Python3.11 VScode에서 실행했는데 결과는 다음과 같습니다.
n은 크지 않다
Heapq 사용: 0.002430099993944168
Python 힙q: 0.06343129999004304
정렬 : 9.280000813305378e-05
n = 910
Heapq 사용: 9.220000356435776e-05
Python 힙q: 0.07715500006452203
정렬 : 9.360001422464848e-05
n = 920
Heapq 사용: 9.440002031624317e-05
Python 힙q: 0.06573969998862594
정렬 : 0.00012450001668184996
n = 930
Heapq 사용: 9.689992293715477e-05
Python 힙q: 0.06760239996947348
정렬 : 9.66999214142561e-05
n = 940
Heapq 사용: 9.600003249943256e-05
Python 힙q: 0.07372559991199523
정렬 : 9.680003859102726e-05
n = 950
Heapq 사용: 9.770004544407129e-05
Python 힙q: 0.07306570000946522
정렬 : 0.00011979998089373112
n = 960
Heapq 사용: 9.980006143450737e-05
Python 힙q: 0.0771204000338912
정렬 : 0.00022829999215900898
n = 970
Heapq 사용: 0.0001601999392732978
Python 힙q: 0.07493270002305508
정렬 : 0.00010840001050382853
n = 980
Heapq 사용: 9.949994273483753e-05
Python 힙q: 0.07698320003692061
정렬 : 0.00010300008580088615
n = 990
Heapq 사용: 9.979994501918554e-05
Python 힙q: 0.0848745999392122
정렬 : 0.00012620002962648869
n이 크면?
n = 10000
Heapq 사용: 0.003642000025138259
Python 힙q: 9.698883199947886
정렬 : 0.00107999995816499
n = 11000
Heapq 사용: 0.0014836000045761466
Python 힙q: 10.537632800056599
정렬 : 0.0012236000038683414
n = 12000
Heapq 사용: 0.001384599949233234
Python 힙q: 12.328411899972707
정렬 : 0.0013226999435573816
n = 13000
Heapq 사용: 0.0020017001079395413
Python 힙q: 15.637207800056785
정렬 : 0.0015075999544933438
n = 14000
Heapq 사용: 0.0017026999266818166
Python 힙q: 17.298848500009626
정렬 : 0.0016967999981716275
n = 15000
Heapq 사용: 0.0017773000290617347
Python 힙q: 20.780625900020823
정렬 : 0.0017105999868363142
내가 찾은 내용 및 개선 방법
n이 큰 경우 Sorted는 약간의 시간이 소요되지만(때로는 heapq를 사용하는 것보다 더 나음) Python Heapq은 많은 시간이 소요됩니다.
- Sorted는 시간이 조금 걸리지만 Python Heapq은 시간이 많이 걸리는 이유는 무엇입니까?
- sorted()는 Python에 내장된 함수이므로 이에 대한 Python 공식 문서를 찾을 수 있습니다.
내장 기능은 컴파일 언어인 C로 작성되었기 때문에 heapq보다 빠릅니다.
- 어떻게 개선할 수 있나요?
- heapq.sort() 대신 내장 함수 sorted()를 사용하여 코드 성능을 향상시킬 수 있습니다. sorted() 함수는 Python에 내장된 함수로 C로 구현되므로 heapq.sort()보다 훨씬 빠릅니다.
경련
대량 데이터를 처리할 때는 코드 성능을 향상시키기 위해 heapq.sort() 대신 내장 함수를 사용해야 합니다. 대용량 데이터를 다룰 때 시간 복잡도 문제에 주의해야 합니다. 때로는 시간 복잡성의 함정을 피할 수 없지만 가능한 한 이를 피하도록 노력해야 합니다.
나에 대해
안녕하세요 멍친위안 입니다. 저는 학생입니다. 나는 새로운 것을 배우는 것을 좋아합니다.
내 github을 볼 수 있습니다: [MengQinYuan의 Github][https://github.com/mengqinyuan]
위 내용은 '시간 복잡도 함정에 주의하세요\'의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.

정규 표현식은 프로그래밍의 패턴 일치 및 텍스트 조작을위한 강력한 도구이며 다양한 응용 프로그램에서 텍스트 처리의 효율성을 높입니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

뜨거운 주제



