Editor | Radish Skin
전통적인 분석 알고리즘과 딥러닝 모델을 포함한 전산 초해상도 방법으로 광학현미경이 크게 향상되었습니다. 그 중 지도심층신경망은 뛰어난 성능을 보여주었지만, 살아있는 세포의 높은 역동성으로 인해 대량의 고품질 훈련 데이터가 필요하며 이러한 데이터를 얻는 것은 매우 힘들고 비실용적입니다.
최근 연구에서 칭화대학교와 중국과학원 연구진은 현미경 이미지의 해상도를 회절 한계보다 1.5배 즉각적으로 높일 수 있는 제로샷 디콘볼루션 네트워크(ZS-DeconvNet)를 개발했습니다. 일반적인 초해상도 이미징 조건보다 10배 낮으며, 지상 실험이나 추가 데이터 수집 없이 자율적으로 수행됩니다.
연구원들은 또한 내부 전반사 형광 현미경, 3D 광시야 현미경, 공초점 현미경, 2광자 현미경, 격자 광시트 현미경 및 다중 모달 구조 조명 현미경을 포함한 여러 이미징 양식에서 ZS-DeconvNet의 다용도 적용 가능성을 시연했습니다. 유사분열 단일 세포부터 마우스 및 예쁜꼬마선충까지 다세포 배아 유기체의 다색, 장기, 초고해상도 2D/3D 이미징을 가능하게 합니다.
연구 제목은 "Zero-shot learning은 광학 형광 현미경에서 즉각적인 노이즈 제거 및 초해상도를 가능하게 합니다"라는 제목으로 2024년 5월 16일 "Nature Communications"에 게재되었습니다.
광학 형광 현미경은 생물학적 연구에 매우 중요합니다. 초해상도 기술의 발전으로 이미징 세부 사항이 향상되었지만 공간 해상도가 향상되면서 다른 이미징 매개변수도 상충됩니다. 전산 초해상도 방법은 온라인에서 이미지 품질을 개선하고, 기존 장비의 기능을 향상시키며, 응용 범위를 확장할 수 있는 능력으로 인해 연구 핫스팟이 되었습니다.
이러한 방법은 분석 모델을 기반으로 한 디콘볼루션 기술과 딥 러닝을 기반으로 한 초해상도(SR) 네트워크라는 두 가지 범주로 나뉩니다. 전자는 매개변수 조정과 복잡한 이미징 환경에 대한 적응력 부족으로 인해 제한됩니다. 후자는 빅 데이터를 통해 복잡한 이미지 변환을 학습할 수 있지만 획득이 어렵고 훈련 데이터 품질에 대한 높은 의존도와 같은 문제에 직면합니다. 이는 일상적인 생물학 연구에서 딥러닝 초해상도 기술의 인기와 적용을 제한합니다.
여기서 Tsinghua University와 Chinese Academy of Sciences의 연구팀은 저해상도 및 낮은 신호만을 사용하여 DLSR 네트워크의 비지도 훈련이 가능한 제로샷 디콘볼루션 심층 신경망 프레임워크 ZS-DeconvNet을 제안했습니다. -평면 이미지 또는 체적 이미지 스택의 노이즈 비율을 통해 제로샷 구현이 가능합니다.
따라서 최첨단 DLSR 방법과 비교할 때 ZS-DeconvNet은 생물학적 프로세스가 너무 역동적이거나 빛에 너무 민감하여 실제 SR 이미지를 획득할 수 없는 다양한 생물학적 이미징 환경에 적응할 수 있습니다. 이미지 획득 프로세스는 알 수 없거나 비이상적인 요인의 영향을 받습니다.
연구원들은 단일 낮은 신호 대 잡음비 입력 이미지에 대해 교육을 받은 경우에도 ZS-DeconvNet은 특정 이미지 없이도 높은 충실도와 정량화를 통해 회절 한계를 넘어 1.5배 이상 해상도를 향상시킬 수 있다고 말합니다. 매개변수 조정.
ZS-DeconvNet은 주사 현미경부터 광시야 검출 현미경까지 다양한 이미징 방식에 적합하며 다양한 샘플 및 현미경 설정에서 그 기능을 입증했습니다.
그림: ZS-DeconvNet을 여러 이미징 양식으로 일반화합니다. (출처: 논문)
연구원들은 적절하게 훈련된 ZS-DeconvNet이 밀리초 단위의 고해상도 이미지를 추론할 수 있어 여러 소기관 상호 작용, 이동, 유사분열 및 소기관 역학은 물론 높은 처리량을 오랫동안 유지하는 동안 빛에 민감한 세포 골격을 활성화할 수 있음을 보여줍니다. C. elegans 및 마우스 배아 발달의 세포 내 구조 및 역학에 대한 용어 SR 2D/3D 이미징.
그림: 다중 모드 SIM 데이터의 제로 샘플 노이즈 제거 및 해상도 향상. (출처: 논문)
또한, ZS-DeconvNet을 생물학 연구계에서 널리 사용할 수 있도록 하기 위해, 팀에서는 쉽게 사용할 수 있는 피지 플러그인 툴박스와 ZS-DeconvNet 방법 튜토리얼 홈페이지를 구축했습니다. 딥러닝 지식이 없는 사용자.
광범위한 적용 가능성과 견고성에도 불구하고 ZS-DeconvNet 사용자는 저형광 신호의 오인, 다양한 이미징 모드의 이미지에 적용할 때의 성능 저하, 부적절한 PSF로 인한 문제 등 잠재적인 팬텀 생성과 그 한계를 인식하는 것이 좋습니다. 비지도 학습의 해상도 개선은 지도 학습의 경우만큼 명확하지 않습니다.
향후에는 더욱 진보된 네트워크 아키텍처를 결합하고, 다른 광학 초해상도 기술로 확장하고, 도메인 적응 또는 일반화 기술을 채택하고, 공간적으로 다양한 PSF를 처리함으로써 ZS-DeconvNet의 기능과 응용 범위가 더욱 확장될 것입니다.
논문 링크:https://www.nature.com/articles/s41467-024-48575-9
위 내용은 회절 한계를 1.5배 초과, 이미징 조건은 10배 더 낮음, 칭화대학교와 중국과학원은 AI 방법을 사용하여 현미경 해상도 향상의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

人工智能Artificial Intelligence(AI)、机器学习Machine Learning(ML)和深度学习Deep Learning(DL)通常可以互换使用。但是,它们并不完全相同。人工智能是最广泛的概念,它赋予机器模仿人类行为的能力。机器学习是将人工智能应用到系统或机器中,帮助其自我学习和不断改进。最后,深度学习使用复杂的算法和深度神经网络来重复训练特定的模型或模式。让我们看看每个术语的演变和历程,以更好地理解人工智能、机器学习和深度学习实际指的是什么。人工智能自过去 70 多

众所周知,在处理深度学习和神经网络任务时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个比较低端的GPU,性能也会胜过CPU。深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。但问题来了,如何选购合适的GPU也是件头疼烧脑的事。怎么避免踩雷,如何做出性价比高的选择?曾经拿到过斯坦福、UCL、CMU、NYU、UW 博士 offer、目前在华盛顿大学读博的知名评测博主Tim Dettmers就针对深度学习领域需要怎样的GPU,结合自

一. 背景介绍在字节跳动,基于深度学习的应用遍地开花,工程师关注模型效果的同时也需要关注线上服务一致性和性能,早期这通常需要算法专家和工程专家分工合作并紧密配合来完成,这种模式存在比较高的 diff 排查验证等成本。随着 PyTorch/TensorFlow 框架的流行,深度学习模型训练和在线推理完成了统一,开发者仅需要关注具体算法逻辑,调用框架的 Python API 完成训练验证过程即可,之后模型可以很方便的序列化导出,并由统一的高性能 C++ 引擎完成推理工作。提升了开发者训练到部署的体验

深度学习 (DL) 已成为计算机科学中最具影响力的领域之一,直接影响着当今人类生活和社会。与历史上所有其他技术创新一样,深度学习也被用于一些违法的行为。Deepfakes 就是这样一种深度学习应用,在过去的几年里已经进行了数百项研究,发明和优化各种使用 AI 的 Deepfake 检测,本文主要就是讨论如何对 Deepfake 进行检测。为了应对Deepfake,已经开发出了深度学习方法以及机器学习(非深度学习)方法来检测 。深度学习模型需要考虑大量参数,因此需要大量数据来训练此类模型。这正是

导读深度学习已在面向自然语言处理等领域的实际业务场景中广泛落地,对它的推理性能优化成为了部署环节中重要的一环。推理性能的提升:一方面,可以充分发挥部署硬件的能力,降低用户响应时间,同时节省成本;另一方面,可以在保持响应时间不变的前提下,使用结构更为复杂的深度学习模型,进而提升业务精度指标。本文针对地址标准化服务中的深度学习模型开展了推理性能优化工作。通过高性能算子、量化、编译优化等优化手段,在精度指标不降低的前提下,AI模型的模型端到端推理速度最高可获得了4.11倍的提升。1. 模型推理性能优化

Part 01 概述 在实时音视频通信场景,麦克风采集用户语音的同时会采集大量环境噪声,传统降噪算法仅对平稳噪声(如电扇风声、白噪声、电路底噪等)有一定效果,对非平稳的瞬态噪声(如餐厅嘈杂噪声、地铁环境噪声、家庭厨房噪声等)降噪效果较差,严重影响用户的通话体验。针对泛家庭、办公等复杂场景中的上百种非平稳噪声问题,融合通信系统部生态赋能团队自主研发基于GRU模型的AI音频降噪技术,并通过算法和工程优化,将降噪模型尺寸从2.4MB压缩至82KB,运行内存降低约65%;计算复杂度从约186Mflop

今天的主角,是一对AI界相爱相杀的老冤家:Yann LeCun和Gary Marcus在正式讲述这一次的「新仇」之前,我们先来回顾一下,两位大神的「旧恨」。LeCun与Marcus之争Facebook首席人工智能科学家和纽约大学教授,2018年图灵奖(Turing Award)得主杨立昆(Yann LeCun)在NOEMA杂志发表文章,回应此前Gary Marcus对AI与深度学习的评论。此前,Marcus在杂志Nautilus中发文,称深度学习已经「无法前进」Marcus此人,属于是看热闹的不

过去十年是深度学习的“黄金十年”,它彻底改变了人类的工作和娱乐方式,并且广泛应用到医疗、教育、产品设计等各行各业,而这一切离不开计算硬件的进步,特别是GPU的革新。 深度学习技术的成功实现取决于三大要素:第一是算法。20世纪80年代甚至更早就提出了大多数深度学习算法如深度神经网络、卷积神经网络、反向传播算法和随机梯度下降等。 第二是数据集。训练神经网络的数据集必须足够大,才能使神经网络的性能优于其他技术。直至21世纪初,诸如Pascal和ImageNet等大数据集才得以现世。 第三是硬件。只有


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
