스트림 처리 기술은 빅데이터 처리에 사용됩니다. 스트림 처리는 데이터 스트림을 실시간으로 처리하는 기술입니다. C++에서는 스트림 처리에 Apache Kafka를 사용할 수 있습니다. 스트림 처리는 실시간 데이터 처리, 확장성 및 내결함성을 제공합니다. 이 예에서는 Apache Kafka를 사용하여 Kafka 주제에서 데이터를 읽고 평균을 계산합니다.
C++ 기술의 빅 데이터 처리: 스트림 처리 기술을 사용하여 빅 데이터 스트림 처리
스트림 처리는 무제한 데이터 스트림을 처리하는 기술로, 개발자는 데이터가 생성되는 즉시 데이터를 처리하고 분석할 수 있습니다. C++에서는 Apache Kafka와 같은 스트림 처리 프레임워크를 사용하여 이 기능을 구현할 수 있습니다.
스트림 처리 프레임워크의 장점
- 실시간 데이터 처리: 저장 및 일괄 처리 없이 즉시 데이터 처리
- 확장성: 대규모 데이터 스트림을 처리하기 위해 쉽게 확장 가능
- 내결함성: 데이터가 손실되지 않도록 보장
실제 사례: Apache Kafka를 사용한 스트림 처리
Apache Kafka를 사용하여 Kafka 주제에서 데이터를 읽고 데이터 스트림의 평균 값을 계산하는 C++ 스트림 처리 애플리케이션을 만들어 보겠습니다.
// 头文件 #include <kafka/apache_kafka.h> #include <thread> #include <atomic> // 定义原子平均值计数器 std::atomic<double> avg_count(0.0); // 流处理消费者线程 void consume_thread(const std::string& topic, rd_kafka_t* rk) { // 创建消费者组 rd_kafka_consumer_group_t* consumer_group = rd_kafka_consumer_group_join(rk, topic.c_str(), rd_kafka_topic_partition_list_new(1), NULL); while (true) { // 订阅主题 rd_kafka_message_t* message; rd_kafka_resp_err_t consumer_err = rd_kafka_consumer_group_poll(consumer_group, 10000, &message); if (consumer_err == RD_KAFKA_RESP_ERR__PARTITION_EOF) { rd_kafka_consumer_group_unjoin(consumer_group); rd_kafka_consumer_group_destroy(consumer_group); return; } else if (consumer_err != RD_KAFKA_RESP_ERR_NO_ERROR) { std::cerr << "Consumer error: " << rd_kafka_err2str(consumer_err) << "\n"; continue; } // 提取并处理数据 if (message) { // 提取值 const char* message_str = static_cast<const char*>(message->payload); int value = std::atoi(message_str); // 更新原子平均值计数器 avg_count += (static_cast<double>(value) - avg_count) / (avg_count.fetch_add(1) + 1); if (avg_count >= 1e6) { std::cout << "Average: " << avg_count << "\n"; } } // 提交偏移量 rd_kafka_message_destroy(message); } } int main() { // 初始化 Kafka 实例 rd_kafka_t* rk = rd_kafka_new(RD_KAFKA_CONSUMER, NULL, NULL, NULL); if (!rk) { std::cerr << "Failed to initialize Kafka instance\n"; return 1; } // 配置 Kafka 实例 char error_str[512]; if (rd_kafka_conf_set(rk, "bootstrap.servers", "localhost:9092", error_str, sizeof(error_str)) != RD_KAFKA_CONF_OK) { std::cerr << "Failed to set Kafka configuration: " << error_str << "\n"; rd_kafka_destroy(rk); return 1; } // 创建流处理消费者线程 std::thread consumer_thr(consume_thread, "test-topic", rk); // 等待消费者线程 consumer_thr.join(); // 销毁 Kafka 实例 rd_kafka_destroy(rk); return 0; }
이 코드를 실행하면 Kafka 주제 "test-topic"에서 데이터를 읽고 초당 평균을 계산하는 스트림 처리 애플리케이션이 생성됩니다.
위 내용은 C++ 기술의 빅 데이터 처리: 스트림 처리 기술을 사용하여 빅 데이터 스트림을 처리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

C에서 다형성을 마스터하면 코드 유연성과 유지 관리가 크게 향상 될 수 있습니다. 1) 다형성은 다른 유형의 물체를 동일한 기본 유형의 물체로 취급 할 수 있도록합니다. 2) 상속 및 가상 기능을 통해 런타임 다형성을 구현합니다. 3) 다형성은 기존 클래스를 수정하지 않고 코드 확장을 지원합니다. 4) CRTP를 사용하여 컴파일 타임 다형성을 구현하면 성능이 향상 될 수 있습니다. 5) 스마트 포인터는 자원 관리를 돕습니다. 6) 기본 클래스에는 가상 파괴자가 있어야합니다. 7) 성능 최적화는 먼저 코드 분석이 필요합니다.

C Destructorsprovideprepisecontroloverresourcemanagement, whilegarbagecollectorsautomatememormanorymanagementbutintroction.c 파괴자 : 1) 허용 customcleanupactionswhenobjectsaredestroyed, 2) ggooutofscop을 방출하는 것은 즉시 방출

1) Pugixml 또는 TinyXML 라이브러리를 사용하여 XML 파일을 구문 분석하고 생성하는 데 도움이 될 수 있습니다. 2) 구문 분석을위한 DOM 또는 SAX 방법을 선택하고, 3) 중첩 노드 및 다단계 속성을 처리, 4) 디버깅 기술 및 모범 사례를 사용하여 성능을 최적화하십시오.

XML은 데이터, 특히 구성 파일, 데이터 저장 및 네트워크 통신에서 데이터를 구조화하는 편리한 방법을 제공하기 때문에 C에서 사용됩니다. 1) TinyXML, PugixML, RapidXML과 같은 적절한 라이브러리를 선택하고 프로젝트 요구에 따라 결정하십시오. 2) XML 파싱 및 생성의 두 가지 방법을 이해하십시오. DOM은 자주 액세스 및 수정에 적합하며 SAX는 큰 파일 또는 스트리밍 데이터에 적합합니다. 3) 성능을 최적화 할 때 TinyXML은 작은 파일에 적합하며 PugixML은 메모리와 속도에서 잘 작동하며 RapidXML은 큰 파일을 처리하는 데 탁월합니다.

C#과 C의 주요 차이점은 메모리 관리, 다형성 구현 및 성능 최적화입니다. 1) C#은 쓰레기 수집기를 사용하여 메모리를 자동으로 관리하는 반면 C는 수동으로 관리해야합니다. 2) C#은 인터페이스 및 가상 방법을 통해 다형성을 실현하고 C는 가상 함수와 순수한 가상 함수를 사용합니다. 3) C#의 성능 최적화는 구조 및 병렬 프로그래밍에 따라 다르며 C는 인라인 함수 및 멀티 스레딩을 통해 구현됩니다.

DOM 및 SAX 방법은 XML 데이터를 C에서 구문 분석하는 데 사용될 수 있습니다. 1) DOM 파싱은 XML로드를 메모리로, 작은 파일에 적합하지만 많은 메모리를 차지할 수 있습니다. 2) Sax Parsing은 이벤트 중심이며 큰 파일에 적합하지만 무작위로 액세스 할 수는 없습니다. 올바른 방법을 선택하고 코드를 최적화하면 효율성이 향상 될 수 있습니다.

C는 고성능과 유연성으로 인해 게임 개발, 임베디드 시스템, 금융 거래 및 과학 컴퓨팅 분야에서 널리 사용됩니다. 1) 게임 개발에서 C는 효율적인 그래픽 렌더링 및 실시간 컴퓨팅에 사용됩니다. 2) 임베디드 시스템에서 C의 메모리 관리 및 하드웨어 제어 기능이 첫 번째 선택이됩니다. 3) 금융 거래 분야에서 C의 고성능은 실시간 컴퓨팅의 요구를 충족시킵니다. 4) 과학 컴퓨팅에서 C의 효율적인 알고리즘 구현 및 데이터 처리 기능이 완전히 반영됩니다.

C는 죽지 않았지만 많은 주요 영역에서 번성했습니다 : 1) 게임 개발, 2) 시스템 프로그래밍, 3) 고성능 컴퓨팅, 4) 브라우저 및 네트워크 응용 프로그램, C는 여전히 유명한 활력 및 응용 시나리오를 보여줍니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.