개요
Java 언어는 List 및 Set과 같은 일부 추상 데이터 유형을 정의하는 일련의 데이터 수집 프레임워크를 제공합니다. 각 추상 데이터 유형에는 특정 구현이 있으며 하위 계층에서는 ArrayList 및 LinkedList와 같은 다양한 구현 방법을 채택합니다.
또한 Java는 데이터 컬렉션을 탐색하는 여러 가지 방법을 제공합니다. 개발자는 다양한 기본 구현에서 각 순회 방법의 특성, 적용 가능한 상황 및 성능을 명확하게 이해해야 합니다. 아래에서 이 내용을 자세히 분석해 보겠습니다.
데이터 요소는 메모리에 어떻게 저장되나요?
데이터 요소는 메모리에 저장되며 두 가지 주요 저장 방법이 있습니다.
1. 순차저장, 랜덤액세스(직접접속):
이런 방식으로 인접한 데이터 요소는 인접한 메모리 주소에 저장되며 전체 메모리 주소는 연속적입니다. 메모리 주소는 요소의 위치를 기반으로 직접 계산하여 직접 읽을 수 있습니다. 특정 위치에서 요소를 읽는 평균 시간 복잡도는 O(1)입니다. 일반적으로 배열을 기반으로 구현된 컬렉션에만 이 기능이 있습니다. Java는 ArrayList로 표현됩니다.
2. 체인 스토리지, 순차 접근:
이런 방식으로 각 데이터 요소는 메모리에서 인접한 위치에 있을 필요가 없습니다. 각 데이터 요소에는 다음 요소의 메모리 주소가 포함됩니다. 메모리 주소는 요소의 위치를 기반으로 직접 계산할 수 없으며 요소는 순서대로만 읽을 수 있습니다. 특정 위치의 요소를 읽는 평균 시간 복잡도는 O(n)입니다. 주로 연결리스트(Linked List)로 표현됩니다.
Java에서는 LinkedList로 표현됩니다.
Java에서 제공하는 순회 메소드는 무엇인가요?
1. 카운터 기반의 전통적인 for 루프 탐색:
순회자는 컬렉션 외부에 카운터를 유지한 다음 각 위치의 요소를 순서대로 읽고 마지막 요소를 읽으면 중지됩니다. 가장 중요한 것은 위치에 따라 요소를 읽는 것입니다. 이는 가장 원시적인 컬렉션 순회 방법이기도 합니다.
은 다음과 같이 작성됩니다.
for (int i = 0; i < list.size(); i++) { list.get(i); }
2. 반복자 순회, 반복자:
Iterator는 원래 OO의 디자인 패턴입니다. 주요 목적은 다양한 데이터 컬렉션의 특성을 보호하고 컬렉션 탐색을 위한 인터페이스를 통합하는 것입니다. OO 언어로서 Java는 자연스럽게 컬렉션에서 반복자 모드를 지원합니다.
은 다음과 같이 작성됩니다.
Iterator iterator = list.iterator(); while (iterator.hasNext()) { iterator.next(); }
3. foreach 루프 순회:
Shield는 반복자와 카운터를 명시적으로 선언했습니다.
장점: 코드가 간결하고 오류가 발생할 가능성이 적습니다.
단점: 단순 순회만 수행할 수 있으며 순회 과정 중 데이터 수집 작업(삭제, 교체)을 수행할 수 없습니다.
은 다음과 같이 작성됩니다.
for (ElementType element : list) { }
각 순회 방식의 구현 원리는 무엇인가요?
1. 카운터 기반의 전통적인 for 루프 탐색:
순회자는 컬렉션 외부에 카운터를 유지한 다음 각 위치의 요소를 순서대로 읽고 마지막 요소를 읽으면 중지됩니다. 가장 중요한 것은 위치에 따라 요소를 읽는 것입니다.
2. 반복자 순회, 반복자:
특별히 구현된 각 데이터 컬렉션은 일반적으로 해당 Iterator를 제공해야 합니다. 전통적인 for 루프와 비교하여 Iterator는 명시적인 순회 카운터를 제거합니다. 따라서 순차적으로 저장된 컬렉션을 기반으로 하는 Iterator는 위치별로 데이터에 직접 접근할 수 있습니다. 연결된 저장소 컬렉션을 기반으로 하는 Iterator의 일반적인 구현에는 현재 이동된 위치를 저장해야 합니다. 그런 다음 현재 위치를 기준으로 포인터를 앞이나 뒤로 이동합니다.
3. foreach 루프 순회:
디컴파일된 바이트코드에 따르면 foreach도 Iterator를 사용하여 내부적으로 구현되어 있지만 Java 컴파일러가 이러한 코드를 생성하는 것을 확인할 수 있습니다.
저장 방법별로 순회 방법의 성능은 어떻습니까?
1. 카운터 기반의 전통적인 for 루프 탐색:
요소의 위치를 기준으로 하기 때문에 위치별로 읽혀집니다. 따라서 순차 저장의 경우 특정 위치의 요소를 읽는 평균 시간 복잡도가 O(1)이므로 전체 컬렉션을 순회하는 평균 시간 복잡도가 O(n)임을 알 수 있습니다. 체인형 저장소의 경우 특정 위치에서 요소를 읽는 평균 시간 복잡도는 O(n)이므로 전체 컬렉션을 순회하는 평균 시간 복잡도는 O(n2)(n 제곱)입니다.
위치별로 ArrayList를 읽는 코드: 요소 위치별로 직접 읽습니다.
transient Object[] elementData; public E get(int index) { rangeCheck(index); return elementData(index); } E elementData(int index) { return (E) elementData[index]; }
LinkedList를 위치별로 읽는 코드: 매번 0번째 요소부터 거꾸로 읽어야 합니다. 실제로 내부적으로도 작은 최적화가 이루어졌습니다.
transient int size = 0; transient Node<E> first; transient Node<E> last; public E get(int index) { checkElementIndex(index); return node(index).item; } Node<E> node(int index) { if (index < (size >> 1)) { //查询位置在链表前半部分,从链表头开始查找 Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { //查询位置在链表后半部分,从链表尾开始查找 Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } }
2、迭代器遍历,Iterator:
那么对于RandomAccess类型的集合来说,没有太多意义,反而因为一些额外的操作,还会增加额外的运行时间。但是对于Sequential Access的集合来说,就有很重大的意义了,因为Iterator内部维护了当前遍历的位置,所以每次遍历,读取下一个位置并不需要从集合的第一个元素开始查找,只要把指针向后移一位就行了,这样一来,遍历整个集合的时间复杂度就降低为O(n);
(这里只用LinkedList做例子)LinkedList的迭代器,内部实现,就是维护当前遍历的位置,然后操作指针移动就可以了:
代码:
public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; }
3、foreach循环遍历:
分析Java字节码可知,foreach内部实现原理,也是通过Iterator实现的,只不过这个Iterator是Java编译器帮我们生成的,所以我们不需要再手动去编写。但是因为每次都要做类型转换检查,所以花费的时间比Iterator略长。时间复杂度和Iterator一样。
使用Iterator的字节码:
Code: new # // class java/util/ArrayList dup invokespecial # // Method java/util/ArrayList."<init>":()V astore_ aload_ invokeinterface #, // InterfaceMethod java/util/List.iterator:()Ljava/util/Iterator; astore_ goto aload_ invokeinterface #, // InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object; pop aload_ invokeinterface #, // InterfaceMethod java/util/Iterator.hasNext:()Z ifne return
使用foreach的字节码:
Code: new # // class java/util/ArrayList dup invokespecial # // Method java/util/ArrayList."<init>":()V astore_ aload_ invokeinterface #, // InterfaceMethod java/util/List.iterator:()Ljava/util/Iterator; astore_ goto aload_ invokeinterface #, // InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object; checkcast # // class loop/Model astore_ aload_ invokeinterface #, // InterfaceMethod java/util/Iterator.hasNext:()Z ifne return
各遍历方式的适用于什么场合?
1、传统的for循环遍历,基于计数器的:
顺序存储:读取性能比较高。适用于遍历顺序存储集合。
链式存储:时间复杂度太大,不适用于遍历链式存储的集合。
2、迭代器遍历,Iterator:
顺序存储:如果不是太在意时间,推荐选择此方式,毕竟代码更加简洁,也防止了Off-By-One的问题。
链式存储:意义就重大了,平均时间复杂度降为O(n),还是挺诱人的,所以推荐此种遍历方式。
3、foreach循环遍历:
foreach只是让代码更加简洁了,但是他有一些缺点,就是遍历过程中不能操作数据集合(删除等),所以有些场合不使用。而且它本身就是基于Iterator实现的,但是由于类型转换的问题,所以会比直接使用Iterator慢一点,但是还好,时间复杂度都是一样的。所以怎么选择,参考上面两种方式,做一个折中的选择。
Java的最佳实践是什么?
Java数据集合框架中,提供了一个RandomAccess接口,该接口没有方法,只是一个标记。通常被List接口的实现使用,用来标记该List的实现是否支持Random Access。
一个数据集合实现了该接口,就意味着它支持Random Access,按位置读取元素的平均时间复杂度为O(1)。比如ArrayList。
而没有实现该接口的,就表示不支持Random Access。比如LinkedList。
所以看来JDK开发者也是注意到这个问题的,那么推荐的做法就是,如果想要遍历一个List,那么先判断是否支持Random Access,也就是 list instanceof RandomAccess。
比如:
if (list instanceof RandomAccess) { //使用传统的for循环遍历。 } else { //使用Iterator或者foreach。 }
以上所述是小编给大家介绍的Java遍历集合方法分析(实现原理、算法性能、适用场合),希望对大家有所帮助!

C 및 JavaScript는 WebAssembly를 통한 상호 운용성을 달성합니다. 1) C 코드는 WebAssembly 모듈로 컴파일되어 컴퓨팅 전력을 향상시키기 위해 JavaScript 환경에 도입됩니다. 2) 게임 개발에서 C는 물리 엔진 및 그래픽 렌더링을 처리하며 JavaScript는 게임 로직 및 사용자 인터페이스를 담당합니다.

JavaScript는 웹 사이트, 모바일 응용 프로그램, 데스크탑 응용 프로그램 및 서버 측 프로그래밍에서 널리 사용됩니다. 1) 웹 사이트 개발에서 JavaScript는 HTML 및 CSS와 함께 DOM을 운영하여 동적 효과를 달성하고 jQuery 및 React와 같은 프레임 워크를 지원합니다. 2) 반응 및 이온 성을 통해 JavaScript는 크로스 플랫폼 모바일 애플리케이션을 개발하는 데 사용됩니다. 3) 전자 프레임 워크를 사용하면 JavaScript가 데스크탑 애플리케이션을 구축 할 수 있습니다. 4) node.js는 JavaScript가 서버 측에서 실행되도록하고 동시 요청이 높은 높은 요청을 지원합니다.

Python은 데이터 과학 및 자동화에 더 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 더 적합합니다. 1. Python은 데이터 처리 및 모델링을 위해 Numpy 및 Pandas와 같은 라이브러리를 사용하여 데이터 과학 및 기계 학습에서 잘 수행됩니다. 2. 파이썬은 간결하고 자동화 및 스크립팅이 효율적입니다. 3. JavaScript는 프론트 엔드 개발에 없어서는 안될 것이며 동적 웹 페이지 및 단일 페이지 응용 프로그램을 구축하는 데 사용됩니다. 4. JavaScript는 Node.js를 통해 백엔드 개발에 역할을하며 전체 스택 개발을 지원합니다.

C와 C는 주로 통역사와 JIT 컴파일러를 구현하는 데 사용되는 JavaScript 엔진에서 중요한 역할을합니다. 1) C는 JavaScript 소스 코드를 구문 분석하고 추상 구문 트리를 생성하는 데 사용됩니다. 2) C는 바이트 코드 생성 및 실행을 담당합니다. 3) C는 JIT 컴파일러를 구현하고 런타임에 핫스팟 코드를 최적화하고 컴파일하며 JavaScript의 실행 효율을 크게 향상시킵니다.

실제 세계에서 JavaScript의 응용 프로그램에는 프론트 엔드 및 백엔드 개발이 포함됩니다. 1) DOM 운영 및 이벤트 처리와 관련된 TODO 목록 응용 프로그램을 구축하여 프론트 엔드 애플리케이션을 표시합니다. 2) Node.js를 통해 RESTFULAPI를 구축하고 Express를 통해 백엔드 응용 프로그램을 시연하십시오.

웹 개발에서 JavaScript의 주요 용도에는 클라이언트 상호 작용, 양식 검증 및 비동기 통신이 포함됩니다. 1) DOM 운영을 통한 동적 컨텐츠 업데이트 및 사용자 상호 작용; 2) 사용자가 사용자 경험을 향상시키기 위해 데이터를 제출하기 전에 클라이언트 확인이 수행됩니다. 3) 서버와의 진실한 통신은 Ajax 기술을 통해 달성됩니다.

보다 효율적인 코드를 작성하고 성능 병목 현상 및 최적화 전략을 이해하는 데 도움이되기 때문에 JavaScript 엔진이 내부적으로 작동하는 방식을 이해하는 것은 개발자에게 중요합니다. 1) 엔진의 워크 플로에는 구문 분석, 컴파일 및 실행; 2) 실행 프로세스 중에 엔진은 인라인 캐시 및 숨겨진 클래스와 같은 동적 최적화를 수행합니다. 3) 모범 사례에는 글로벌 변수를 피하고 루프 최적화, Const 및 Lets 사용 및 과도한 폐쇄 사용을 피하는 것이 포함됩니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
