本文实例分析了Python中的对象,方法,类,实例,函数用法。分享给大家供大家参考。具体分析如下:
Python是一个完全面向对象的语言。不仅实例是对象,类,函数,方法也都是对象。
static_attr = True
def method(self):
pass
foo = Foo()
这段代码实际上创造了两个对象,Foo和foo。而Foo同时又是一个类,foo是这个类的实例。
在C++里类型定义是在编译时完成的,被储存在静态内存里,不能轻易修改。在Python里类型本身是对象,和实例对象一样储存在堆中,对于解释器来说类对象和实例对象没有根本上的区别。
在Python中每一个对象都有自己的命名空间。空间内的变量被存储在对象的__dict__里。这样,Foo类有一个__dict__, foo实例也有一个__dict__,但这是两个不同的命名空间。
所谓“定义一个类”,实际上就是先生成一个类对象,然后执行一段代码,但把执行这段代码时的本地命名空间设置成类的__dict__. 所以你可以写这样的代码:
... bar = 1 + 1
... qux = bar + 1
... print "bar: ", bar
... print "qux: ", qux
... print locals()
...
bar: 2
qux: 3
{'qux': 3, '__module__': '__main__', 'bar': 2}
>>> print Foo.bar, Foo.__dict__['bar']
2 2
>>> print Foo.qux, Foo.__dict__['qux']
3 3
所谓“定义一个函数”,实际上也就是生成一个函数对象。而“定义一个方法”就是生成一
个函数对象,并把这个对象放在一个类的__dict__中。下面两种定义方法的形式是等价的:
... def bar(self):
... return 2
...
>>> def qux(self):
... return 3
...
>>> Foo.qux = qux
>>> print Foo.bar, Foo.__dict__['bar']
>>> print Foo.qux, Foo.__dict__['qux']
>>> foo = Foo()
>>> foo.bar()
2
>>> foo.qux()
3
而类继承就是简单地定义两个类对象,各自有不同的__dict__:
... smell = 'good'
... taste = 'good'
...
>>> class Stilton(Cheese):
... smell = 'bad'
...
>>> print Cheese.smell
good
>>> print Cheese.taste
good
>>> print Stilton.smell
bad
>>> print Stilton.taste
good
>>> print 'taste' in Cheese.__dict__
True
>>> print 'taste' in Stilton.__dict__
False
复杂的地方在`.`这个运算符上。对于类来说,Stilton.taste的意思是“在Stilton.__dict__中找'taste'. 如果没找到,到父类Cheese的__dict__里去找,然后到父类的父类,等等。如果一直到object仍没找到,那么扔一个AttributeError.”
实例同样有自己的__dict__:
... smell = 'good'
... taste = 'good'
... def __init__(self, weight):
... self.weight = weight
... def get_weight(self):
... return self.weight
...
>>> class Stilton(Cheese):
... smell = 'bad'
...
>>> stilton = Stilton('100g')
>>> print 'weight' in Cheese.__dict__
False
>>> print 'weight' in Stilton.__dict__
False
>>> print 'weight' in stilton.__dict__
True
不管__init__()是在哪儿定义的, stilton.__dict__与类的__dict__都无关。
Cheese.weight和Stilton.weight都会出错,因为这两个都碰不到实例的命名空间。而
stilton.weight的查找顺序是stilton.__dict__ => Stilton.__dict__ =>
Cheese.__dict__ => object.__dict__. 这与Stilton.taste的查找顺序非常相似,仅仅是
在最前面多出了一步。
方法稍微复杂些。
>>> print Cheese.get_weight
>>> print stilton.get_weight
<__main__.stilton object at>>
我们可以看到点运算符把function变成了unbound method. 直接调用类命名空间的函数和点
运算返回的未绑定方法会得到不同的错误:
Traceback (most recent call last):
File "", line 1, in
TypeError: get_weight() takes exactly 1 argument (0 given)
>>> Cheese.get_weight()
Traceback (most recent call last):
File "", line 1, in
TypeError: unbound method get_weight() must be called with Cheese instance as
first argument (got nothing instead)
但这两个错误说的是一回事,实例方法需要一个实例。所谓“绑定方法”就是简单地在调用方法时把一个实例对象作为第一个参数。下面这些调用方法是等价的:
'100g'
>>> Cheese.get_weight(stilton)
'100g'
>>> Stilton.get_weight(stilton)
'100g'
>>> stilton.get_weight()
'100g'
最后一种也就是平常用的调用方式,stilton.get_weight(),是点运算符的另一种功能,将stilton.get_weight()翻译成stilton.get_weight(stilton).
这样,方法调用实际上有两个步骤。首先用属性查找的规则找到get_weight, 然后将这个属性作为函数调用,并把实例对象作为第一参数。这两个步骤间没有联系。比如说你可以这样试:
Traceback (most recent call last):
File "", line 1, in
TypeError: 'str' object is not callable
先查找weight这个属性,然后将weight做为函数调用。但weight是字符串,所以出错。要注意在这里属性查找是从实例开始的:
>>> stilton.get_weight()
'200g'
但是
'100g'
Stilton.get_weight的查找跳过了实例对象stilton,所以查找到的是没有被覆盖的,在Cheese中定义的方法。
getattr(stilton, 'weight')和stilton.weight是等价的。类对象和实例对象没有本质区别,getattr(Cheese, 'smell')和Cheese.smell同样是等价的。getattr()与点运算符相比,好处是属性名用字符串指定,可以在运行时改变。
__getattribute__()是最底层的代码。如果你不重新定义这个方法,object.__getattribute__()和type.__getattribute__()就是getattr()的具体实现,前者用于实例,后者用以类。换句话说,stilton.weight就是object.__getattribute__(stilton, 'weight'). 覆盖这个方法是很容易出错的。比如说点运算符会导致无限递归:
return self.__dict__[name]
__getattribute__()中还有其它的细节,比如说descriptor protocol的实现,如果重写很容易搞错。
__getattr__()是在__dict__查找没找到的情况下调用的方法。一般来说动态生成属性要用这个,因为__getattr__()不会干涉到其它地方定义的放到__dict__里的属性。
... smell = 'good'
... taste = 'good'
...
>>> class Stilton(Cheese):
... smell = 'bad'
... def __getattr__(self, name):
... return 'Dynamically created attribute "%s"' % name
...
>>> stilton = Stilton()
>>> print stilton.taste
good
>>> print stilton.weight
Dynamically created attribute "weight"
>>> print 'weight' in stilton.__dict__
False
由于方法只不过是可以作为函数调用的属性,__getattr__()也可以用来动态生成方法,但同样要注意无限递归:
... smell = 'good'
... taste = 'good'
... def __init__(self, weight):
... self.weight = weight
...
>>> class Stilton(Cheese):
... smell = 'bad'
... def __getattr__(self, name):
... if name.startswith('get_'):
... def func():
... return getattr(self, name[4:])
... return func
... else:
... if hasattr(self, name):
... return getattr(self, name)
... else:
... raise AttributeError(name)
...
>>> stilton = Stilton('100g')
>>> print stilton.weight
100g
>>> print stilton.get_weight
>>> print stilton.get_weight()
100g
>>> print stilton.age
Traceback (most recent call last):
File "", line 1, in
File "", line 12, in __getattr__
AttributeError: age
希望本文所述对大家的Python程序设计有所帮助。

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
