찾다
백엔드 개발파이썬 튜토리얼Python中利用函数装饰器实现备忘功能

“备忘”的定义

“memoization”(备忘)这个词是由Donald Michie在1968年提出的,它基于拉丁语单词“memorandum”(备忘录),意思是“被记住”。虽然它和单词“memorization”在某种程度上有些相似,但它并不是该单词的错误拼写。实际上,Memoisation是一种用于通过计算来加速程序的技术,它通过记住输入量的计算结果,例如函数调用结果,来实现其加速目的。如果遇到相同的输入或者具有相同参数的函数调用,那么之前存储的结果就可以被再次使用,从而避免一些不必要的计算。在很多情况下,可以使用一个简单的数组来存储结果,但也可以使用许多其他的数据结构,例如关联数组,它在Perl语言中叫做哈希,在Python语言中称为字典。

备忘功能可以由程序员显式地编程实现,但是一些编程语言如Python,都提供了自动备忘函数的机制。
利用函数装饰器实现备忘功能

在前面关于递归函数的那章中,我们分别使用迭代和递归实现了斐波纳契数列的求解。我们已经证明,如果直接利用斐波纳契数列的数学定义,在一个递归函数中实现数列的求解,正如下面的函数一样,那么它将具有指数级的时间复杂度:
 

def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)

此外,我们还提出了一种提高递归实现的时间复杂度的方法,即通过添加一个字典来记住之前函数的计算结果。这是一个显式地使用备忘技术的例子,只是当时我们并没有这么称呼它。这种方法的缺点是,原始递归实现的明晰性和优雅性丢失了。

造成以上缺点的原因是,我们改变了递归函数fib的代码。不过下面的代码不会改变我们的fib函数,所以它的明晰性和易读性并没有丢失。为了实现该目的,我们使用自定义的函数memoize()。函数memoize()以函数作为参数,并使用一个字典“memo”来存储函数的结果。虽然变量“memo”和函数“f”仅仅具有局部备忘功能,但是它们通过函数“helper”被一个闭包捕获,而memoize()将函数“helper”作为引用返回。所以,对memoize(fib)的调用将会返回一个helper()的引用,而在helper()中实现了fib()函数的功能以及一个用于保存还未存储的结果到字典“memo”中的包装器,并防止重新计算“memo”中已有的结果。
 

def memoize(f):
  memo = {}
  def helper(x):
    if x not in memo:      
      memo[x] = f(x)
    return memo[x]
  return helper
 
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)
 
fib = memoize(fib)
 
print(fib(40))

现在让我们了解下所谓的装饰器,首先看一下上面代码中将备忘功能指派到fib函数的这一行:
 

fib = memoize(fib)

一种说法是,函数memoize()装饰了函数fib。
将Memoize封装成类

我们还可以将结果的缓存封装到一个类中,如下面的例子所示:

 class Memoize:
  def __init__(self, fn):
    self.fn = fn
    self.memo = {}
  def __call__(self, *args):
    if args not in self.memo:
  self.memo[args] = self.fn(*args)
    return self.memo[args]

因为我们使用了字典,所以不能使用可变参数,即参数必须是不可变的。
Python中的装饰器

Python中的装饰器是一个可调用的Python对象,用于修改一个函数、方法或者类的定义。原始的对象,也就是即将被改变的那个对象,作为参数传递给一个装饰器,而装饰器则返回一个修改过的对象,例如一个修改过的函数,它会被绑定到定义中使用的名字上。Python中的装饰器与Java中的注解有一个相似的语法,即Python中的装饰器语法可以看作是纯粹的语法糖,使用“@”作为关键字。
示例:使用装饰器实现备忘功能

其实,前面我们已经使用了装饰器,只是没有这么称呼它而已。实际上,本章开头例子中的memoize函数就是一个装饰器,我们使用它来记住fib函数的结果,只是我们没有使用Python中装饰器特殊的语法而已,即艾特字符“@”。

相比于写成下面的形式
 

fib = memoize(fib)

我们可以这样写
 

@memoize

但这一行必须直接写在被装饰的函数之前,在我们的例子fib()中,如下所示:
 

def memoize(f):
  memo = {}
  def helper(x):
    if x not in memo:      
      memo[x] = f(x)
    return memo[x]
  return helper
 
@memoize
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)
 
#fib = memoize(fib)
 
print(fib(40))

利用装饰器检查参数

在讲解递归函数的那章中我们介绍了阶乘函数,在那里我们希望保持函数尽可能简单,而不想掩盖基本理念,所以代码中没有包含任何参数检查代码。然而,如果别人以负数或者浮点数作为参数来调用我们的函数,那么函数将会陷入一个死循环。

下面的程序使用一个装饰器函数来确保传给函数“factorial”的参数是一个正整数:
 

def argument_test_natural_number(f):
  def helper(x):
    if type(x) == int and x > 0:
      return f(x)
    else:
      raise Exception("Argument is not an integer")
  return helper
 
@argument_test_natural_number
def factorial(n):
  if n == 1:
    return 1
  else:
    return n * factorial(n-1)
 
for i in range(1,10):
  print(i, factorial(i))
 
print(factorial(-1))


练习

1、我们的练习是一个古老的谜题。1612年,法国耶稣会士Claude-Gaspar Bachet提出了该谜题,即使用一个天平称出从1磅到40磅的所有整数重量的东西(例如,糖或者面粉),求最少的砝码数量。

第一个方法可能是使用1、2、4、8、16和32磅重量的这些砝码。如果我们将砝码放在天平的一端,而将物品放在另一端,那么这种方法用到的砝码数量将是最小的。然而,我们也可以将砝码同时放在天平的两端,此时我们仅仅需要重量为1、3、9、27的砝码。

编写一个Python函数weigh(),该函数计算需要的砝码以及它们在天平盘中的分布,以此来称量1磅到40磅中任何一个整数重量的物品。
解决方法

1、我们需要前面章节“Linear Combinations”中的函数linear_combination()。
 

def factors_set():
  factors_set = ( (i,j,k,l) for i in [-1,0,1]
             for j in [-1,0,1]
             for k in [-1,0,1]
             for l in [-1,0,1])
  for factor in factors_set:
    yield factor
 
def memoize(f):
  results = {}
  def helper(n):
    if n not in results:
      results[n] = f(n)
    return results[n]
  return helper
 
@memoize
def linear_combination(n):
  """ returns the tuple (i,j,k,l) satisfying
    n = i*1 + j*3 + k*9 + l*27   """
  weighs = (1,3,9,27)
 
  for factors in factors_set():
    sum = 0
    for i in range(len(factors)):
     sum += factors[i] * weighs[i]
    if sum == n:
     return factors

2、利用上面的代码,就能很容易写出我们的函数weigh()。
 

def weigh(pounds):
  weights = (1,3,9,27)
  scalars = linear_combination(pounds)
  left = ""
  right = ""
  for i in range(len(scalars)):
    if scalars[i] == -1:
      left += str(weights[i]) + " "
  elif scalars[i] == 1:
      right += str(weights[i]) + " "
  return (left,right)
 
for i in [2,3,4,7,8,9,20,40]:
  pans = weigh(i)
  print("Left pan: " + str(i) + " plus " + pans[0])
  print("Right pan: " + pans[1] + "n")

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Apr 24, 2025 pm 03:53 PM

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Apr 24, 2025 pm 03:49 PM

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

파이썬의 맥락에서 '배열'및 '목록'을 정의하십시오.파이썬의 맥락에서 '배열'및 '목록'을 정의하십시오.Apr 24, 2025 pm 03:41 PM

Inpython, "목록", isaversatile, mutablesequencetatcanholdmixeddatattypes, whilean "array"isamorememory-efficed, homogeneouseceenceRequiringElements ofthesAmeType.1) ListSareIdeAldiversEdatastorageandmanipulationDuetoIrflexibrieth

파이썬 목록은 변이 가능합니까? 파이썬 어레이는 어떻습니까?파이썬 목록은 변이 가능합니까? 파이썬 어레이는 어떻습니까?Apr 24, 2025 pm 03:37 PM

PythonlistsAndarraysareBotheBotheBothebothable.1) ListSareflexibleandsupporterogenousDatabutarabestemory-efficient.2) Arraysaremorememory-efforhomogeneousdatabutlessverstile, CorrectTypecodeusagetoavoidercer가 필요합니다.

Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.