찾다
백엔드 개발파이썬 튜토리얼Python函数参数类型*、**的区别

Python函数参数类型*、**的区别

Jun 10, 2016 pm 03:15 PM
***python기능차이점매개변수 유형

刚开始学习python,python相对于java确实要简洁易用得多。内存回收类似hotspot的可达性分析, 不可变对象也如同java得Integer类型,with函数类似新版本C++的特性,总体来说理解起来比较轻松。只是函数部分参数的"*"与"**",闭包等问题,着实令人迷糊了一把,弄清概念后写下此文记录下来,也希望本文能够帮助其他初学者。

所以本文是一篇学习笔记,着重于使用的细节和理解上,首先分别介绍了函数各种参数类型在调用和声明时的区别,及其在混用时需要注意的一些细节,之后讲了闭包相关的内容。如果有不对的地方欢迎指正。

函数参数不带“*”,"*" 与 "**"的区别
理解这个问题得关键在于要分开理解调用和声明语法中3者得区别.

函数调用区别

1. 不同类型的参数简述
#这里先说明python函数调用得语法为:

复制代码 代码如下:

func(positional_args, keyword_args,
 *tuple_grp_nonkw_args, **dict_grp_kw_args)
 
 #为了方便说明,之后用以下函数进行举例
 def test(a,b,c,d,e):
  print a,b,c,d,e

举个例子来说明这4种调用方式得区别:
复制代码 代码如下:

#-------------------------------
#positional_args方式
>>> test(1,2,3,4,5)
1 2 3 4 5

#这种调用方式的函数处理等价于
a,b,c,d,e = 1,2,3,4,5
print a,b,c,d,e

#-------------------------------
#keyword_args方式
>>> test(a=1,b=3,c=4,d=2,e=1)
1 3 4 2 1

#这种处理方式得函数处理等价于
a=1
b=3
c=4
d=2
e=1
print a,b,c,d,e

#-------------------------------
#*tuple_grp_nonkw_args方式
>>> x = 1,2,3,4,5
>>> test(*x)
1 2 3 4 5


#这种方式函数处理等价于
复制代码 代码如下:

a,b,c,d,e = x
print a,b,c,d,e
#特别说明:x也可以为dict类型,x为dick类型时将键传递给函数
>>> y
{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}
>>> test(*y)
a c b e d

#---------------------------------
#**dict_grp_kw_args方式
>>> y
{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}
>>> test(**y)
1 2 6 1 1

#这种函数处理方式等价于
a = y['a']
b = y['b']
... #c,d,e不再赘述
print a,b,c,d,e

2. 不同类型参数混用需要注意的一些细节
  接下来说明不同参数类型混用的情况,要理解不同参数混用得语法需要理解以下几方面内容.

  首先要明白,函数调用使用参数类型必须严格按照顺序,不能随意调换顺序,否则会报错. 如 (a=1,2,3,4,5)会引发错误,; (*x,2,3)也会被当成非法.

  其次,函数对不同方式处理的顺序也是按照上述的类型顺序.因为#keyword_args方式和**dict_grp_kw_args方式对参数一一指定,所以无所谓顺序.所以只需要考虑顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的顺序.因此,可以简单理解为只有#positional_args方式,#*tuple_grp_nonkw_args方式有逻辑先后顺序的.

  最后,参数是不允许多次赋值的.

  举个例子说明,顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的逻辑先后关系:

复制代码 代码如下:

#只有在顺序赋值,列表赋值在结果上存在罗辑先后关系
#正确的例子1
>>> x = {3,4,5}
>>> test(1,2,*x)
1 2 3 4 5
#正确的例子2
>>> test(1,e=2,*x)
1 3 4 5 2

#错误的例子
>>> test(1,b=2,*x)
Traceback (most recent call last):
  File "", line 1, in
TypeError: test() got multiple values for keyword argument 'b'

#正确的例子1,处理等价于
a,b = 1,2 #顺序参数
c,d,e = x #列表参数
print a,b,c,d,e

#正确的例子2,处理等价于
a = 1 #顺序参数
e = 2 #关键字参数
b,c,d = x #列表参数

#错误的例子,处理等价于
a = 1 #顺序参数
b = 2 #关键字参数
b,c,d = x #列表参数
#这里由于b多次赋值导致异常,可见只有顺序参数和列表参数存在罗辑先后关系

函数声明区别

  理解了函数调用中不同类型参数得区别之后,再来理解函数声明中不同参数得区别就简单很多了.

1. 函数声明中的参数类型说明

  函数声明只有3种类型, arg, *arg , **arg 他们得作用和函数调用刚好相反. 调用时*tuple_grp_nonkw_args将列表转换为顺序参数,而声明中的*arg的作用是将顺序赋值(positional_args)转换为列表. 调用时**dict_grp_kw_args将字典转换为关键字参数,而声明中**arg则反过来将关键字参数(keyword_args)转换为字典.
特别提醒:*arg 和 **arg可以为空值.

以下举例说明上述规则:

复制代码 代码如下:

#arg, *arg和**arg作用举例
def test2(a,*b,**c):
 print a,b,c
#---------------------------
#*arg 和 **arg可以不传递参数
>>> test2(1)
1 () {}
#arg必须传递参数
>>> test2()
Traceback (most recent call last):
  File "", line 1, in
TypeError: test2() takes at least 1 argument (0 given)

#----------------------------
#*arg将顺positional_args转换为列表
>>> test2(1,2,[1,2],{'a':1,'b':2})
1 (2, [1, 2], {'a': 1, 'b': 2}) {}
#该处理等价于
a = 1 #arg参数处理
b = 2,[1,2],{'a':1,'b':2} #*arg参数处理
c = dict() #**arg参数处理
print a,b,c

#-----------------------------
#**arg将keyword_args转换为字典
>>> test2(1,2,3,d={1:2,3:4}, c=12, b=1)
1 (2, 3) {'c': 12, 'b': 1, 'd': {1: 2, 3: 4}}
#该处理等价于
a = 1 #arg参数处理
b= 2,3 #*arg参数处理
#**arg参数处理
c = dict()
c['d'] = {1:2, 3:4}
c['c'] = 12
c['b'] = 1
print a,b,c


2. 处理顺序问题

  函数总是先处理arg类型参数,再处理*arg和**arg类型的参数. 因为*arg和**arg针对的调用参数类型不同,所以不需要考虑他们得顺序.

复制代码 代码如下:

def test2(a,*b,**c):
 print a,b,c
>>> test2(1, b=[1,2,3], c={1:2, 3:4},a=1)
Traceback (most recent call last):
  File "", line 1, in
TypeError: test2() got multiple values for keyword argument 'a'
#这里会报错得原因是,总是先处理arg类型得参数
#该函数调用等价于
#处理arg类型参数:
a = 1
a = 1  #多次赋值,导致异常
#处理其他类型参数
...
print a,b,c

闭包
  python的函数,原本只能访问两个区域的变量:全局,和局部(函数上下文). 实际上,函数本身也是一个对象,也有自己的作用域. 闭包通过函数与引用集合的组合,使得函数可以在它被定义的区域之外执行. 这个集合可以通过func_closure来获取这个引用集合. 这与python处理全局变量得方式一样,只不过全局变量将引用集合存储在__globals__字段中.func_closure是一个存储cell类型的元组,每个cell存储一个上下文变量.

  另外,旧版本得python的内部函数不能在其他作用域使用的原因,并不是因为每个作用域的变量严格相互隔离,而是脱离原本的作用域后,函数失去了原本上下文的引用。需要注意的是,闭包存储的上下文信息一样是浅拷贝,所以传递给内部函数的可变对象仍然会被其他拥有该对象引用得变量修改.

举个例子:

复制代码 代码如下:

>>> def foo(x,y):
...     def bar():
...             print x,y
...     return bar
...
#查看func_closure的引用信息
>>> a = [1,2]
>>> b = foo(a,0)
>>> b.func_closure[0].cell_contents
[1, 2]
>>> b.func_closure[1].cell_contents
0
>>> b()
[1, 2] 0

#可变对象仍然能被修改
>>> a.append(3)
>>> b.func_closure[0].cell_contents
[1, 2, 3]
>>> b()
[1, 2, 3] 0

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Apr 29, 2025 am 12:27 AM

다음 단계를 통해 Numpy를 사용하여 다차원 배열을 만들 수 있습니다. 1) Numpy.array () 함수를 사용하여 NP.Array ([[1,2,3], [4,5,6]]과 같은 배열을 생성하여 2D 배열을 만듭니다. 2) np.zeros (), np.ones (), np.random.random () 및 기타 함수를 사용하여 특정 값으로 채워진 배열을 만듭니다. 3) 서브 어레이의 길이가 일관되고 오류를 피하기 위해 배열의 모양과 크기 특성을 이해하십시오. 4) NP.Reshape () 함수를 사용하여 배열의 모양을 변경하십시오. 5) 코드가 명확하고 효율적인지 확인하기 위해 메모리 사용에주의를 기울이십시오.

Numpy 어레이에서 '방송'의 개념을 설명하십시오.Numpy 어레이에서 '방송'의 개념을 설명하십시오.Apr 29, 2025 am 12:23 AM

BroadcastingInnumpyIsamethodtoperformoperationsonArraysoffferentShapesByAutomicallyAligningThem.itsimplifiesCode, enourseadability, andboostsperformance.here'showitworks : 1) smalraysarepaddedwithonestomatchdimenseare

데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.Apr 29, 2025 am 12:20 AM

forpythondatastorage, chooselistsforflexibilitywithmixeddatatypes, array.arrayformemory-effic homogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatilebutlessefficipforlargenumericaldatasets.arrayoffersamiddlegro

파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarraysformanagingDiversEdatatypes.1) 1) listscanholdementsofdifferentTypes, 2) thearedynamic, weantEasyAdditionSandremovals, 3) wefferintufiveOperationsLikEslicing, but 4) butiendess-effectorlowerggatesets.

파이썬 어레이에서 요소에 어떻게 액세스합니까?파이썬 어레이에서 요소에 어떻게 액세스합니까?Apr 29, 2025 am 12:11 AM

toaccesselementsInapyThonArray : my_array [2] AccessHetHirdElement, returning3.pythonuseszero 기반 인덱싱 .1) 사용 positiveAndnegativeIndexing : my_list [0] forthefirstelement, my_list [-1] forstelast.2) audeeliciforarange : my_list

파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?Apr 28, 2025 pm 04:34 PM

기사는 구문 모호성으로 인해 파이썬에서 튜플 이해의 불가능성에 대해 논의합니다. 튜플을 효율적으로 생성하기 위해 튜플 ()을 사용하는 것과 같은 대안이 제안됩니다. (159 자)

파이썬의 모듈과 패키지는 무엇입니까?파이썬의 모듈과 패키지는 무엇입니까?Apr 28, 2025 pm 04:33 PM

이 기사는 파이썬의 모듈과 패키지, 차이점 및 사용법을 설명합니다. 모듈은 단일 파일이고 패키지는 __init__.py 파일이있는 디렉토리이며 관련 모듈을 계층 적으로 구성합니다.

파이썬에서 Docstring이란 무엇입니까?파이썬에서 Docstring이란 무엇입니까?Apr 28, 2025 pm 04:30 PM

기사는 Python의 Docstrings, 사용법 및 혜택에 대해 설명합니다. 주요 이슈 : 코드 문서 및 접근성에 대한 문서의 중요성.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구