本文实例讲述了Python实现的数据结构与算法之链表。分享给大家供大家参考。具体分析如下:
一、概述
链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接。
根据结构的不同,链表可以分为单向链表、单向循环链表、双向链表、双向循环链表等。其中,单向链表和单向循环链表的结构如下图所示:
二、ADT
这里只考虑单向循环链表ADT,其他类型的链表ADT大同小异。单向循环链表ADT(抽象数据类型)一般提供以下接口:
① SinCycLinkedlist() 创建单向循环链表
② add(item) 向链表中插入数据项
③ remove(item) 删除链表中的数据项
④ search(item) 在链表中查找数据项是否存在
⑤ empty() 判断链表是否为空
⑥ size() 返回链表中数据项的个数
单向循环链表操作的示意图如下:
三、Python实现
Python的内建类型list底层是由C数组实现的,list在功能上更接近C++的vector(因为可以动态调整数组大小)。我们都知道,数组是连续列表,链表是链接列表,二者在概念和结构上完全不同,因此list不能用于实现链表。
在C/C++中,通常采用“指针+结构体”来实现链表;而在Python中,则可以采用“引用+类”来实现链表。在下面的代码中,SinCycLinkedlist类代表单向循环链表,Node类代表链表中的一个节点:
#!/usr/bin/env python # -*- coding: utf-8 -*- class Node: def __init__(self, initdata): self.__data = initdata self.__next = None def getData(self): return self.__data def getNext(self): return self.__next def setData(self, newdata): self.__data = newdata def setNext(self, newnext): self.__next = newnext class SinCycLinkedlist: def __init__(self): self.head = Node(None) self.head.setNext(self.head) def add(self, item): temp = Node(item) temp.setNext(self.head.getNext()) self.head.setNext(temp) def remove(self, item): prev = self.head while prev.getNext() != self.head: cur = prev.getNext() if cur.getData() == item: prev.setNext(cur.getNext()) prev = prev.getNext() def search(self, item): cur = self.head.getNext() while cur != self.head: if cur.getData() == item: return True cur = cur.getNext() return False def empty(self): return self.head.getNext() == self.head def size(self): count = 0 cur = self.head.getNext() while cur != self.head: count += 1 cur = cur.getNext() return count if __name__ == '__main__': s = SinCycLinkedlist() print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) s.add(19) s.add(86) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) print('86 is%s in s' % ('' if s.search(86) else ' not',)) print('4 is%s in s' % ('' if s.search(4) else ' not',)) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size())) s.remove(19) print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
运行结果:
$ python sincyclinkedlist.py s.empty() == True, s.size() == 0 s.empty() == False, s.size() == 2 86 is in s 4 is not in s s.empty() == False, s.size() == 2 s.empty() == False, s.size() == 1
希望本文所述对大家的Python程序设计有所帮助。

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
