原则, 以datetime为中心, 起点或中转, 转化为目标对象, 涵盖了大多数业务场景中需要的日期转换处理
步骤:
1. 掌握几种对象及其关系
2. 了解每类对象的基本操作方法
3. 通过转化关系转化
涉及对象
1. datetime
>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2015, 1, 12, 23, 9, 12, 946118)
>>> type(now)
2. timestamp
>>> import time
>>> time.time()
1421075455.568243
3. time tuple
>>> import time
>>> time.localtime()
time.struct_time(tm_year=2015, tm_mon=1, tm_mday=12, tm_hour=23, tm_min=10, tm_sec=30, tm_wday=0, tm_yday=12, tm_isdst=0)
4. string
>>> import datetime
>>> datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
'2015-01-12 23:13:08'
5. date
>>> import datetime
>>> datetime.datetime.now().date()
datetime.date(2015, 1, 12)
datetime基本操作
1. 获取当前datetime
>>> import datetime
>>> datetime.datetime.now()
datetime.datetime(2015, 1, 12, 23, 26, 24, 475680)
2. 获取当天date
>>> datetime.date.today()
datetime.date(2015, 1, 12)
3. 获取明天/前N天
明天
>>> datetime.date.today() + datetime.timedelta(days=1)
datetime.date(2015, 1, 13)
三天前
>>> datetime.datetime.now()
datetime.datetime(2015, 1, 12, 23, 38, 55, 492226)
>>> datetime.datetime.now() - datetime.timedelta(days=3)
datetime.datetime(2015, 1, 9, 23, 38, 57, 59363)
4. 获取当天开始和结束时间(00:00:00 23:59:59)
>>> datetime.datetime.combine(datetime.date.today(), datetime.time.min)
datetime.datetime(2015, 1, 12, 0, 0)
>>> datetime.datetime.combine(datetime.date.today(), datetime.time.max)
datetime.datetime(2015, 1, 12, 23, 59, 59, 999999)
5. 获取两个datetime的时间差
>>> (datetime.datetime(2015,1,13,12,0,0) - datetime.datetime.now()).total_seconds()
44747.768075
6. 获取本周/本月/上月最后一天
本周
>>> today = datetime.date.today()
>>> today
datetime.date(2015, 1, 12)
>>> sunday = today + datetime.timedelta(6 - today.weekday())
>>> sunday
datetime.date(2015, 1, 18)
本月
>>> import calendar
>>> today = datetime.date.today()
>>> _, last_day_num = calendar.monthrange(today.year, today.month)
>>> last_day = datetime.date(today.year, today.month, last_day_num)
>>> last_day
datetime.date(2015, 1, 31)
获取上个月的最后一天(可能跨年)
>>> import datetime
>>> today = datetime.date.today()
>>> first = datetime.date(day=1, month=today.month, year=today.year)
>>> lastMonth = first - datetime.timedelta(days=1)
关系转换
几个关系之间的转化
Datetime Object / String / timestamp / time tuple
关系转换例子
datetime string
datetime -> string
>>> import datetime
>>> datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
'2015-01-12 23:13:08'
string -> datetime
>>> import datetime
>>> datetime.datetime.strptime("2014-12-31 18:20:10", "%Y-%m-%d %H:%M:%S")
datetime.datetime(2014, 12, 31, 18, 20, 10)
datetime timetuple
datetime -> timetuple
>>> import datetime
>>> datetime.datetime.now().timetuple()
time.struct_time(tm_year=2015, tm_mon=1, tm_mday=12, tm_hour=23, tm_min=17, tm_sec=59, tm_wday=0, tm_yday=12, tm_isdst=-1)
timetuple -> datetime
timetuple => timestamp => datetime [看后面datetimetimestamp]
datetime date
datetime -> date
>>> import datetime
>>> datetime.datetime.now().date()
datetime.date(2015, 1, 12)
date -> datetime
>>> datetime.date.today()
datetime.date(2015, 1, 12)
>>> today = datetime.date.today()
>>> datetime.datetime.combine(today, datetime.time())
datetime.datetime(2015, 1, 12, 0, 0)
>>> datetime.datetime.combine(today, datetime.time.min)
datetime.datetime(2015, 1, 12, 0, 0)
datetime timestamp
datetime -> timestamp
>>> now = datetime.datetime.now()
>>> timestamp = time.mktime(now.timetuple())
>>> timestamp
1421077403.0
timestamp -> datetime
>>> datetime.datetime.fromtimestamp(1421077403.0)
datetime.datetime(2015, 1, 12, 23, 43, 23)

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

Dreamweaver Mac版
시각적 웹 개발 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

드림위버 CS6
시각적 웹 개발 도구
