先说迭代器,对于string、list、dict、tuple等这类容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数,iter()是python的内置函数。iter()会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。比如:
>>> s = 'abc' >>> it = iter(s) >>> it <str_iterator object at 0x7f71fefe9d68> >>> next(it) 'a' >>> next(it) 'b' >>> next(it) 'c' >>> next(it) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
上面说的都是python自带的容器对象,它们都实现了相应的迭代器方法,那如果是自定义类需要遍历怎么办?方法很简单,对这个类AClass,实现一个__iter__(self)方法,使其返回一个带有__next__(self)方法的对象就可以了。如果你在AClass刚好也定义了__next__(self)方法(一般使用迭代器都会定义),那在__iter__里只要返回self就可以。废话少说,先上代码:
class Fib(object): def __init__(self, max): super(Fib, self).__init__() self.max = max def __iter__(self): self.a = 0 self.b = 1 return self def __next__(self): fib = self.a if fib > self.max: raise StopIteration self.a, self.b = self.b, self.a + self.b return fib def main(): fib = Fib(100) for i in fib: print(i) if __name__ == '__main__': main()
简单讲下代码会干什么,定义了一个Fib类,用于生成fibonacci序列。用for遍历时会逐个打印生成的fibonacci数,max是生成的fibonacci序列中数字大小的上限。
在类的实现中,定义了一个__iter__(self)方法,这个方法是在遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter(),由iter()通过调用__iter__(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的__next__(self)方法对迭代器对象进行遍历。所以要实现__iter__(self)和__next__(self)。而且因为实现了__next__(self),所以在实现__iter__(self)的时候,直接返回self就可以。
为了更好理解,我再简单重复下上面说的那一段:在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的__iter__(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的__next__(self)。__iter__只会被调用一次,而__next__会被调用 n 次。
下面说生成器。
生成器(Generator)是创建迭代器的简单而强大的工具。它们写起来就像是正规的函数,只是在需要返回数据的时候使用yield语句。每次next()被调用时,生成器会返回它脱离的位置(它记忆语句最后一次执行的位置和所有的数据值)。以下示例演示了生成器可以很简单的创建出来:
>>> def reverse(data): ... for index in range(len(data)-1, -1, -1): ... yield data[index] ... >>> for char in reverse('hello'): ... print(char) ... o l l e h
关于迭代器和生成器的区别,生成器能做到迭代器能做的所有事,而且因为自动创建了__iter__()和 next()方法,生成器显得特别简洁,而且生成器也是高效的。除了创建和保存程序状态的自动方法,当发生器终结时,还会自动抛出StopIteration异常。一个带有yield的函数就是一个 生成器,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用next()(在 for 循环中会自动调用next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个yield语句就会中断,并返回一个迭代值,下次执行时从yield的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被yield中断了数次,每次中断都会通过yield返回当前的迭代值(yield暂停一个函数,next()从其暂停处恢复其运行)。
另外对于生成器,python还提供了一个生成器表达式:类似与一个yield值的匿名函数。表达式本身看起来像列表推到, 但不是用方括号而是用圆括号包围起来:
>>> unique_characters = {'E', 'D', 'M', 'O', 'N', 'S', 'R', 'Y'} >>> gen = (ord(c) for c in unique_characters) >>> gen <generator object <genexpr> at 0x7f2be4668678> >>> for i in gen: ... print(i) ... 69 79 83 77 82 78 89 68 >>>
如果需要,可以将生成器表达式传给tuple、list或是set来迭代所有的值并且返回元组、列表或是集合。在这种情况下,不需要一对额外的括号 ———— 直接将生成器表达式 ord(c) for c in unique_characters传给tuple()等函数就可以了, Python 会推断出它是一个生成器表达式。
最后,为什么要使用生成器?因为效率。使用生成器表达式取代列表解析可以同时节省 cpu 和 内存(ram)。如果你构造一个列表的目的仅仅是传递给别的函数,(比如 传递给tuple()或者set()), 那就用生成器表达式替代吧!
以上所述就是本文的全部内容了,希望大家能够喜欢。

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Dreamweaver Mac版
시각적 웹 개발 도구
