찾다
백엔드 개발파이썬 튜토리얼Python聚类算法之基本K均值实例详解

本文实例讲述了Python聚类算法之基本K均值运算技巧。分享给大家供大家参考,具体如下:

基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数。每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个。然后,根据指派到簇的点,更新每个簇的质心。重复指派和更新操作,直到质心不发生明显的变化。

# scoding=utf-8
import pylab as pl
points = [[int(eachpoint.split("#")[0]), int(eachpoint.split("#")[1])] for eachpoint in open("points","r")]
# 指定三个初始质心
currentCenter1 = [20,190]; currentCenter2 = [120,90]; currentCenter3 = [170,140]
pl.plot([currentCenter1[0]], [currentCenter1[1]],'ok')
pl.plot([currentCenter2[0]], [currentCenter2[1]],'ok')
pl.plot([currentCenter3[0]], [currentCenter3[1]],'ok')
# 记录每次迭代后每个簇的质心的更新轨迹
center1 = [currentCenter1]; center2 = [currentCenter2]; center3 = [currentCenter3]
# 三个簇
group1 = []; group2 = []; group3 = []
for runtime in range(50):
  group1 = []; group2 = []; group3 = []
  for eachpoint in points:
    # 计算每个点到三个质心的距离
    distance1 = pow(abs(eachpoint[0]-currentCenter1[0]),2) + pow(abs(eachpoint[1]-currentCenter1[1]),2)
    distance2 = pow(abs(eachpoint[0]-currentCenter2[0]),2) + pow(abs(eachpoint[1]-currentCenter2[1]),2)
    distance3 = pow(abs(eachpoint[0]-currentCenter3[0]),2) + pow(abs(eachpoint[1]-currentCenter3[1]),2)
    # 将该点指派到离它最近的质心所在的簇
    mindis = min(distance1,distance2,distance3)
    if(mindis == distance1):
      group1.append(eachpoint)
    elif(mindis == distance2):
      group2.append(eachpoint)
    else:
      group3.append(eachpoint)
  # 指派完所有的点后,更新每个簇的质心
  currentCenter1 = [sum([eachpoint[0] for eachpoint in group1])/len(group1),sum([eachpoint[1] for eachpoint in group1])/len(group1)]
  currentCenter2 = [sum([eachpoint[0] for eachpoint in group2])/len(group2),sum([eachpoint[1] for eachpoint in group2])/len(group2)]
  currentCenter3 = [sum([eachpoint[0] for eachpoint in group3])/len(group3),sum([eachpoint[1] for eachpoint in group3])/len(group3)]
  # 记录该次对质心的更新
  center1.append(currentCenter1)
  center2.append(currentCenter2)
  center3.append(currentCenter3)
# 打印所有的点,用颜色标识该点所属的簇
pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')
pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')
pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')
# 打印每个簇的质心的更新轨迹
for center in [center1,center2,center3]:
  pl.plot([eachcenter[0] for eachcenter in center], [eachcenter[1] for eachcenter in center],'k')
pl.show()

运行效果截图如下:

希望本文所述对大家Python程序设计有所帮助。

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Numpy를 사용하여 다차원 배열을 어떻게 생성합니까?Apr 29, 2025 am 12:27 AM

다음 단계를 통해 Numpy를 사용하여 다차원 배열을 만들 수 있습니다. 1) Numpy.array () 함수를 사용하여 NP.Array ([[1,2,3], [4,5,6]]과 같은 배열을 생성하여 2D 배열을 만듭니다. 2) np.zeros (), np.ones (), np.random.random () 및 기타 함수를 사용하여 특정 값으로 채워진 배열을 만듭니다. 3) 서브 어레이의 길이가 일관되고 오류를 피하기 위해 배열의 모양과 크기 특성을 이해하십시오. 4) NP.Reshape () 함수를 사용하여 배열의 모양을 변경하십시오. 5) 코드가 명확하고 효율적인지 확인하기 위해 메모리 사용에주의를 기울이십시오.

Numpy 어레이에서 '방송'의 개념을 설명하십시오.Numpy 어레이에서 '방송'의 개념을 설명하십시오.Apr 29, 2025 am 12:23 AM

BroadcastingInnumpyIsamethodtoperformoperationsonArraysoffferentShapesByAutomicallyAligningThem.itsimplifiesCode, enourseadability, andboostsperformance.here'showitworks : 1) smalraysarepaddedwithonestomatchdimenseare

데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.데이터 저장을 위해 목록, Array.Array 및 Numpy Array 중에서 선택하는 방법을 설명하십시오.Apr 29, 2025 am 12:20 AM

forpythondatastorage, chooselistsforflexibilitywithmixeddatatypes, array.arrayformemory-effic homogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatilebutlessefficipforlargenumericaldatasets.arrayoffersamiddlegro

파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.파이썬 목록을 사용하는 것이 배열을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarraysformanagingDiversEdatatypes.1) 1) listscanholdementsofdifferentTypes, 2) thearedynamic, weantEasyAdditionSandremovals, 3) wefferintufiveOperationsLikEslicing, but 4) butiendess-effectorlowerggatesets.

파이썬 어레이에서 요소에 어떻게 액세스합니까?파이썬 어레이에서 요소에 어떻게 액세스합니까?Apr 29, 2025 am 12:11 AM

toaccesselementsInapyThonArray : my_array [2] AccessHetHirdElement, returning3.pythonuseszero 기반 인덱싱 .1) 사용 positiveAndnegativeIndexing : my_list [0] forthefirstelement, my_list [-1] forstelast.2) audeeliciforarange : my_list

파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?파이썬에서 튜플 이해력이 가능합니까? 그렇다면, 어떻게 그리고 그렇지 않다면?Apr 28, 2025 pm 04:34 PM

기사는 구문 모호성으로 인해 파이썬에서 튜플 이해의 불가능성에 대해 논의합니다. 튜플을 효율적으로 생성하기 위해 튜플 ()을 사용하는 것과 같은 대안이 제안됩니다. (159 자)

파이썬의 모듈과 패키지는 무엇입니까?파이썬의 모듈과 패키지는 무엇입니까?Apr 28, 2025 pm 04:33 PM

이 기사는 파이썬의 모듈과 패키지, 차이점 및 사용법을 설명합니다. 모듈은 단일 파일이고 패키지는 __init__.py 파일이있는 디렉토리이며 관련 모듈을 계층 적으로 구성합니다.

파이썬에서 Docstring이란 무엇입니까?파이썬에서 Docstring이란 무엇입니까?Apr 28, 2025 pm 04:30 PM

기사는 Python의 Docstrings, 사용법 및 혜택에 대해 설명합니다. 주요 이슈 : 코드 문서 및 접근성에 대한 문서의 중요성.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)