Python 在 2.2 版本中引入了descriptor(描述符)功能,也正是基于这个功能实现了新式类(new-styel class)的对象模型,同时解决了之前版本中经典类 (classic class) 系统中出现的多重继承中的 MRO(Method Resolution Order) 问题,另外还引入了一些新的概念,比如 classmethod, staticmethod, super, Property 等。因此理解 descriptor 有助于更好地了解 Python 的运行机制。
那么什么是 descriptor 呢?
简而言之:descriptor 就是一类实现了__get__(), __set__(), __delete__()方法的对象。
Orz...如果你瞬间顿悟了,那么请收下我的膝盖;
O_o!...如果似懂非懂,那么恭喜你!说明你潜力很大,咱们可以继续挖掘:
引言
对于陌生的事物,一个具体的栗子是最好的学习方式,首先来看这样一个问题:假设我们给一次数学考试创建一个类,用于记录每个学生的学号、数学成绩、以及提供一个用于判断是否通过考试的check 函数:
class MathScore(): def __init__(self, std_id, score): self.std_id = std_id self.score = score def check(self): if self.score >= 60: return 'pass' else: return 'failed'
很简单一个示例,看起来运行的不错:
xiaoming = MathScore(10, 90) xiaoming.score Out[3]: 90 xiaoming.std_id Out[4]: 10 xiaoming.check() Out[5]: 'pass'
但是会有一个问题,比如手一抖录入了一个负分数,那么他就得悲剧的挂了:
xiaoming = MathScore(10, -90) xiaoming.score Out[8]: -90 xiaoming.check() Out[9]: 'failed'
这显然是一个严重的问题,怎么能让一个数学 90+ 的孩子挂科呢,于是乎一个简单粗暴的方法就诞生了:
class MathScore(): def __init__(self, std_id, score): self.std_id = std_id if score < 0: raise ValueError("Score can't be negative number!") self.score = score def check(self): if self.score >= 60: return 'pass' else: return 'failed'
上面再类的初始化函数中增加了负数判断,虽然不够优雅,甚至有点拙劣,但这在实例初始化时确实工作的不错:
xiaoming = MathScore(10, -90) Traceback (most recent call last): File "<ipython-input-12-6faad631790d>", line 1, in <module> xiaoming = MathScore(10, -90) File "C:/Users/xu_zh/.spyder2-py3/temp.py", line 14, in __init__ raise ValueError("Score can't be negative number!") ValueError: Score can't be negative number!
OK, 但我们还无法阻止实例对 score 的赋值操作,毕竟修改成绩也是常有的事:
xiaoming = MathScore(10, 90) xiaoming = -10 # 无法判断出错误
对于大多数童鞋,这个问题 so easy 的啦:将 score 变为私有,从而禁止 xiaoming.score 这样的直接调用,增加一个 get_score 和 set_score 用于读写:
class MathScore(): def __init__(self, std_id, score): self.std_id = std_id if score < 0: raise ValueError("Score can't be negative number!") self.__score = score def check(self): if self.__score >= 60: return 'pass' else: return 'failed' def get_score(self): return self.__score def set_score(self, value): if value < 0: raise ValueError("Score can't be negative number!") self.__score = value
这确实是种常见的解决方法,但是不得不说这简直丑爆了:
调用成绩再也不能使用 xiaoming.score 这样自然的方式,需要使用 xiaoming.get_score() ,这看起来像口吃在说话!
还有那反人类的下划线和括号...那应该只出现在计算机之间窃窃私语之中...
赋值也无法使用 xiaoming.score = 80, 而需使用 xiaoming.set_score(80), 这对数学老师来说,太 TM 不自然了 !!!
作为一门简洁优雅的编程语言,Python 是不会坐视不管的,于是其给出了 Property 类:
Property 类
先不管 Property 是啥,咱先看看它是如何简洁优雅的解决上面这个问题的:
class MathScore(): def __init__(self, std_id, score): self.std_id = std_id if score < 0: raise ValueError("Score can't be negative number!") self.__score = score def check(self): if self.__score >= 60: return 'pass' else: return 'failed' def __get_score__(self): return self.__score def __set_score__(self, value): if value < 0: raise ValueError("Score can't be negative number!") self.__score = value score = property(__get_score__, __set_score__)
与上段代码相比,主要是在最后一句实例化了一个 property 实例,并取名为 score, 这个时候,我们就能如此自然的对 instance.__score 进行读写了:
xiaoming = MathScore(10, 90) xiaoming.score Out[30]: 90 xiaoming.score = 80 xiaoming.score Out[32]: 80 xiaoming.score = -90 Traceback (most recent call last): File "<ipython-input-33-aed7397ed552>", line 1, in <module> xiaoming.score = -90 File "C:/Users/xu_zh/.spyder2-py3/temp.py", line 28, in __set_score__ raise ValueError("Score can't be negative number!") ValueError: Score can't be negative number!
WOW~~一切工作正常!
嗯,那么问题来了:它是怎么工作的呢?
先看下 property 的参数:
class property(fget=None, fset=None, fdel=None, doc=None) #拷贝自 Python 官方文档
它的工作方式:
实例化 property 实例(我知道这是句废话);
调用 property 实例(比如xiaoming.score)会直接调用 fget,并由 fget 返回相应值;
对 property 实例进行赋值操作(xiaoming.score = 80)则会调用 fset,并由 fset 定义完成相应操作;
删除 property 实例(del xiaoming),则会调用 fdel 实现该实例的删除;
doc 则是该 property 实例的字符说明;
fget/fset/fdel/doc 需自定义,如果只设置了fget,则该实例为只读对象;
这看起来和本篇开头所说的 descriptor 的功能非常相似,让我们回顾一下 descriptor:
“descriptor 就是一类实现了__get__(), __set__(), __delete__()方法的对象。”
@~@ 如果你这次又秒懂了,那么请再次收下我的膝盖 Orz...
另外,Property 还有个装饰器语法糖 @property,其所实现的功能与 property() 完全一样:
class MathScore(): def __init__(self, std_id, score): self.std_id = std_id if score < 0: raise ValueError("Score can't be negative number!") self.__score = score def check(self): if self.__score >= 60: return 'pass' else: return 'failed' @property def score(self): return self.__score @score.setter def score(self, value): #注意方法名称要与上面一致,否则会失效 if value < 0: raise ValueError("Score can't be negative number!") self.__score = value
我们知道了 property 实例的工作方式了,那么问题又来了:它是怎么实现的?
事实上 Property 确实是基于 descriptor 而实现的,下面进入我们的正题 descriptor 吧!
descriptor 描述符
照样先不管 descriptor 是啥,咱们还是先看栗子,对于上面 Property 实现的功能,我们可以通过自定义的 descriptor 来实现:
class NonNegative(): def __init__(self): pass def __get__(self, ist, cls): return 'descriptor get: ' + str(ist.__score ) #这里加上字符描述便于看清调用 def __set__(self, ist, value): if value < 0: raise ValueError("Score can't be negative number!") print('descriptor set:', value) ist.__score = value class MathScore(): score = NonNegative() def __init__(self, std_id, score): self.std_id = std_id if score < 0: raise ValueError("Score can't be negative number!") self.__score = score def check(self): if self.__score >= 60: return 'pass' else: return 'failed'
我们新定义了一个 NonNegative 类,并在其内实现了__get__、__set__方法,然后在 MathScore 类中实例化了一个 NonNegative 的实例 score,注意!!!重要的事情说三遍:score 实例是 MathScore 的类属性!!!类属性!!!类属性!!!这个 Mathscore.score 属性同上面 Property 的 score 实例的功能是一样的,只不过 Mathscore.score 调用的 get、set 并不定义在 Mathscore 内,而是定义在 NonNegative 类中,而 NonNegative 类就是一个 descriptor 对象!
纳尼? NonNegative 类的定义中可没见到半个 “descriptor” 的字样,怎么就成了 descriptor 对象???
淡定! 重要的事情这里只说一遍:任何实现 __get__,__set__ 或 __delete__ 方法中一至多个的类,就是 descriptor 对象。所以 NonNegative 自然是一个 descriptor 对象。
那么 descriptor 对象与普通类比有什么特别之处呢? 先不急,来看看上端代码的效果:
xiaoming = MathScore(10, 90) xiaoming.score Out[67]: 'descriptor get: 90' xiaoming.score = 80 descriptor set: 80 wangerma = MathScore(11, 70) wangerma.score Out[70]: 'descriptor get: 70' wangerma.score = 60 Out[70]: descriptor set: 60 wangerma.score Out[73]: 'descriptor get: 60' xiaoming.score Out[74]: 'descriptor get: 80' xiaoming.score = -90 ValueError: Score can't be negative number!
可以发现,MathScore.score 虽然是一个类属性,但它却可以通过实例的进行赋值,且面对不同的 MathScore 实例 xiaoming、wangerma 的赋值和调用,并不会产生冲突!因此看起来似乎更类似于 MathScore 的实例属性,但与实例属性不同的是它并不通过 MathScore 实例的读写方法操作值,而总是通过 NonNegative 实例的 __get__ 和 __set__ 对值进行操作,那么它是怎么做到这点的?
注意看 __get__、__set__ 的参数
def __get__(self, ist, cls): #self:descriptor 实例本身(如 Math.score),ist:调用 score 的实例(如 xiaoming),cls:descriptor 实例所在的类(如MathScore)
...
def __set__(self, ist, value): #score 就是通过这些传入的 ist 、cls 参数,实现对 MathScore 及其具体实例属性的调用和改写的
...
OK, 现在我们基本搞清了 descriptor 实例是如何实现对宿主类的实例属性进行模拟的。事实上 Property 实例的实现方式与上面的 NonNegative 实例类似。那么我们既然有了 Propery,为什么还要去自定义 descriptor 呢?
答案在于:更加逼真的模拟实例属性(想想 MathScore.__init__里面那恶心的判断语句),还有最重要的是:代码重用!!!
简而言之:通过单个 descriptor 对象,可以更加逼真的模拟实例属性,并且可以实现对宿主类实例的多个实例属性进行操作。
O.O! 如果你又秒懂了,那么你可以直接跳到下面写评论了...
看个栗子:假如不仅要判断学生的分数是否为负数,而且还要判学生的学号是否为负值,使用 property 的实现方式是这样子的:
class MathScore(): def __init__(self, std_id, score): if std_id < 0: raise ValueError("Can't be negative number!") self.__std_id = std_id if score < 0: raise ValueError("Can't be negative number!") self.__score = score def check(self): if self.__score >= 60: return 'pass' else: return 'failed' @property def score(self): return self.__score @score.setter def score(self, value): if value < 0: raise ValueError("Can't be negative number!") self.__score = value @property def std_id(self): return self.__std_id @std_id.setter def std_id(self, idnum): if idnum < 0: raise ValueError("Can't be negative nmuber!") self.__std_id = idnum
Property 实例最大的问题是:
无法影响宿主类实例的初始化,所以咱必须在__init__ 加上那丑恶的 if ...
单个 Property 实例仅能针对宿主类实例的单个属性,如果需要对多个属性进行控制,则必须定义多个 Property 实例, 这真是太蛋疼了!
但是自定义 descriptor 可以很好的解决这个问题,看下实现:
class NonNegative(): def __init__(self): self.dic = dict() def __get__(self, ist, cls): print('Description get', ist) return self.dic[ist] def __set__(self, ist, value): print('Description set', ist, value) if value < 0: raise ValueError("Can't be negative number!") self.dic[ist] = value class MathScore(): score = NonNegative() std_id = NonNegative() def __init__(self, std_id, score): #这里并未创建实例属性 std_id 和 score, 而是调用 MathScore.std_id 和 MathScore.score self.std_id = std_id self.score = score def check(self): if self.score >= 60: return 'pass' else: return 'failed'
哈哈~! MathScore.__init__ 内终于没了 if ,代码也比上面的简洁不少,但是功能一个不少,且实例之间不会相互影响:
事实上,MathScore 多个实例的同一个属性,都是通过单个 MathScore 类的相应类属性(也即 NonNegative 实例)操作的,这同 property 一致,但它又是怎么克服 Property 的两个不足的呢?秘诀有三个:
Property 实例本质上是借助类属性,变向对实例属性进行操作,而 NonNegative 实例则是完全通过类属性模拟实例属性,因此实例属性其实根本不存在;
NonNegative 实例使用字典记录每个 MathScore 实例及其对应的属性值,其中 key 为 MathScore 实例名:比如 score 实例就是使用 dic = {‘Zhangsan':50, ‘Lisi':90} 记录每个实例对应的 score 值,从而确保可以实现对 MathScore 实例属性的模拟;
MathScore 通过在__init__内直接调用类属性,从而实现对实例属性初始化赋值的模拟,而 Property 则不可能,因为 Property 实例(也即MathScore的类属性)是真实的操作 MathScore 实例传入的实例属性以达到目的,但如果在初始化程序中传入的不是实例属性,而是类属性(也即 Property 实例本身),则会陷入无限递归(PS:想一下如果将前一个property 实例实现中的self.__score 改成这里的 self.score 会发生什么)。
这三点看的似懂非懂,没关系,来个比喻:
每个 descriptor 实例(MathScore.score 和 MathScore.std_id)都是类作用域里的一个篮子,篮子里放着写着每个 MathScore 实例名字的盒子(‘zhangsan','lisi‘),同一个篮子里的盒子只记录同样属性的值(比如score篮子里的盒子只记录分数值),当 MathScore 的实例对相应属性进行操作时,则找到对应的篮子,取出标有该实例名字的盒子,并对其进行操作。
因此,实例对应的属性,压根不在实例自己的作用域内,而是在类作用域的篮子里,只不过我们可以通过 xiaoming.score 这样的方式进行操作而已,所以其实际的调用的逻辑是这样的:下图右侧的实例分别通过红线和黑线对score和std_id 进行操作,他们首先通过类调用相应的类属性,然后类属性通过对应的 descriptor 实例作用域对操作进行处理,并返回给类属性相应结果,最后让实例感知到。
看到这里,很多童鞋可能不淡定了,因为大家都知道在 Python 中采取 xiaoming.score = 10 这样的赋值方式,如果 xiaoming 没有 score 这样的实例属性,必定会自动创建该实例属性,怎么会去调用 MathScore 的 score 呢?
首先,要鼓掌!!! 给想到这点的童鞋点赞!!!其实上面在说 Property 的时候这个问题就产生了。
其次,Python 为了实现 discriptor 确实对属性的调用顺序做出了相应的调整,这些将会“Python 的 descriptor(下)”中介绍。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.
