GIL
在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.
这使得无法有效利用计算机系统中的"局部性",频繁的线程切换也对缓存不是很友好,造成资源的浪费.
据说Python官方曾经实现了一个去除GIL的Python解释器,但是其效果还不如有GIL的解释器,遂放弃.后来Python官方推出了"利用多进程替代多线程"的方案,在Python3中也有concurrent.futures这样的包,让我们的程序编写可以做到"简单和性能兼得".
多进程/多线程+Queue
一般来说,在Python中编写并发程序的经验是:计算密集型任务使用多进程,IO密集型任务使用多进程或者多线程.另外,因为涉及到资源共享,所以需要同步锁等一系列麻烦的步骤,代码编写不直观.另外一种好的思路是利用多进程/多线程+Queue的方法,可以避免加锁这样麻烦低效的方式.
现在在Python2中利用Queue+多进程的方法来处理一个IO密集型任务.
假设现在需要下载多个网页内容并进行解析,单进程的方式效率很低,所以使用多进程/多线程势在必行.
我们可以先初始化一个tasks队列,里面将要存储的是一系列dest_url,同时开启4个进程向tasks中取任务然后执行,处理结果存储在一个results队列中,最后对results中的结果进行解析.最后关闭两个队列.
下面是一些主要的逻辑代码.
# -*- coding:utf-8 -*- #IO密集型任务 #多个进程同时下载多个网页 #利用Queue+多进程 #由于是IO密集型,所以同样可以利用threading模块 import multiprocessing def main(): tasks = multiprocessing.JoinableQueue() results = multiprocessing.Queue() cpu_count = multiprocessing.cpu_count() #进程数目==CPU核数目 create_process(tasks, results, cpu_count) #主进程马上创建一系列进程,但是由于阻塞队列tasks开始为空,副进程全部被阻塞 add_tasks(tasks) #开始往tasks中添加任务 parse(tasks, results) #最后主进程等待其他线程处理完成结果 def create_process(tasks, results, cpu_count): for _ in range(cpu_count): p = multiprocessing.Process(target=_worker, args=(tasks, results)) #根据_worker创建对应的进程 p.daemon = True #让所有进程可以随主进程结束而结束 p.start() #启动 def _worker(tasks, results): while True: #因为前面所有线程都设置了daemon=True,故不会无限循环 try: task = tasks.get() #如果tasks中没有任务,则阻塞 result = _download(task) results.put(result) #some exceptions do not handled finally: tasks.task_done() def add_tasks(tasks): for url in get_urls(): #get_urls() return a urls_list tasks.put(url) def parse(tasks, results): try: tasks.join() except KeyboardInterrupt as err: print "Tasks has been stopped!" print err while not results.empty(): _parse(results) if __name__ == '__main__': main()
利用Python3中的concurrent.futures包
在Python3中可以利用concurrent.futures包,编写更加简单易用的多线程/多进程代码.其使用感觉和Java的concurrent框架很相似(借鉴?)
比如下面的简单代码示例
def handler(): futures = set() with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count) as executor: for task in get_task(tasks): future = executor.submit(task) futures.add(future) def wait_for(futures): try: for future in concurrent.futures.as_completed(futures): err = futures.exception() if not err: result = future.result() else: raise err except KeyboardInterrupt as e: for future in futures: future.cancel() print "Task has been canceled!" print e return result
总结
要是一些大型Python项目也这般编写,那么效率也太低了.在Python中有许多已有的框架使用,使用它们起来更加高效.
但是自己的一些"小打小闹"的程序这样来编写还是不错的.:)

Python List 슬라이싱의 기본 구문은 목록 [start : stop : step]입니다. 1. Start는 첫 번째 요소 인덱스, 2.Stop은 첫 번째 요소 인덱스가 제외되고 3. Step은 요소 사이의 단계 크기를 결정합니다. 슬라이스는 데이터를 추출하는 데 사용될뿐만 아니라 목록을 수정하고 반전시키는 데 사용됩니다.

ListSoutPerformArraysin : 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData 및 3) MemoryEfficiencyForsParsEdata, butMayHavesLightPerformanceCosceperationOperations.

TOCONVERTAPYTHONARRAYTOALIST, USETHELIST () CONSTUCTORORAGENERATERATOREXPRESSION.1) importTheArrayModuleAndCreateAnarray.2) USELIST (ARR) 또는 [XFORXINARR] TOCONVERTITTOALIST.

chooSearRaysOverListSinpyTonforBetTerferformanceAndMemoryEfficiencyInspecificscenarios.1) arrgenumericalDatasets : arraysreducememoryUsage.2) Performance-CriticalOperations : ArraysofferspeedboostsfortaskslikeApenorsearching.3) TypeSenforc

파이썬에서는 루프에 사용하여 열거 및 추적 목록에 대한 이해를 나열 할 수 있습니다. Java에서는 루프를 위해 전통적인 사용 및 루프가 트래버스 어레이를 향해 향상시킬 수 있습니다. 1. Python 목록 트래버스 방법에는 다음이 포함됩니다. 루프, 열거 및 목록 이해력. 2. Java 어레이 트래버스 방법에는 다음이 포함됩니다. 루프 용 전통 및 루프를위한 향상.

이 기사는 버전 3.10에 도입 된 Python의 새로운 "매치"진술에 대해 논의하며, 이는 다른 언어로 된 문장과 동등한 역할을합니다. 코드 가독성을 향상시키고 기존 IF-ELIF-EL보다 성능 이점을 제공합니다.

Python 3.11의 예외 그룹은 여러 예외를 동시에 처리하여 동시 시나리오 및 복잡한 작업에서 오류 관리를 향상시킵니다.

Python의 기능 주석은 유형 확인, 문서 및 IDE 지원에 대한 기능에 메타 데이터를 추가합니다. 코드 가독성, 유지 보수를 향상 시키며 API 개발, 데이터 과학 및 라이브러리 생성에 중요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
