찾다
백엔드 개발파이썬 튜토리얼使用Python编写基于DHT协议的BT资源爬虫

关于DHT协议

DHT协议作为BT协议的一个辅助,是非常好玩的。它主要是为了在BT正式下载时得到种子或者BT资源。传统的网络,需要一台中央服务器存放种子或者BT资源,不仅浪费服务器资源,还容易出现单点的各种问题,而DHT网络则是为了去中心化,也就是说任意时刻,这个网络总有节点是亮的,你可以去询问问这些亮的节点,从而将自己加入DHT网络。

要实现DHT协议的网络爬虫,主要分3步,第一步是得到资源信息(infohash,160bit,20字节,可以编码为40字节的十六进制字符串),第二步是确认这些infohash是有效的,第三步是通过有效的infohash下载到BT的种子文件,从而得到对这个资源的完整描述。

其中第一步是其他节点用DHT协议中的get_peers方法向爬虫发送请求得到的,第二步是其他节点用DHT协议中的announce_peer向爬虫发送请求得到的,第三步可以有几种方式得到,比如可以去一些保存种子的网站根据infohash直接下载到,或者通过announce_peer的节点来下载到,具体如何实现,可以取决于你自己的爬虫。

DHT协议中的主要几个操作:

主要负责通过UDP与外部节点交互,封装4种基本操作的请求以及相应。

ping:检查一个节点是否“存活”

在一个爬虫里主要有两个地方用到ping,第一是初始路由表时,第二是验证节点是否存活时

find_node:向一个节点发送查找节点的请求

在一个爬虫中主要也是两个地方用到find_node,第一是初始路由表时,第二是验证桶是否存活时

get_peers:向一个节点发送查找资源的请求

在爬虫中有节点向自己请求时不仅像个正常节点一样做出回应,还需要以此资源的info_hash为机会尽可能多的去认识更多的节点。如图,get_peers实际上最后一步是announce_peer,但是因为爬虫不能announce_peer,所以实际上get_peers退化成了find_node操作。

2016319114959666.png (204×120)

announce_peer:向一个节点发送自己已经开始下载某个资源的通知

爬虫中不能用announce_peer,因为这就相当于通报虚假资源,对方很容易从上下文中判断你是否通报了虚假资源从而把你禁掉。

基于Python的DHT爬虫
修改自github开源爬虫,原作者名字有些。。,这里直接将项目地址列出:https://github.com/Fuck-You-GFW/simDHT,有github帐号的请给原作者star,后续我将结果放入db,外加用tornado做一个简单的查询界面出来放在github上,先备份一下代码

#!/usr/bin/env python
# encoding: utf-8

import socket
from hashlib import sha1
from random import randint
from struct import unpack
from socket import inet_ntoa
from threading import Timer, Thread
from time import sleep
from collections import deque

from bencode import bencode, bdecode

BOOTSTRAP_NODES = (
  ("router.bittorrent.com", 6881),
  ("dht.transmissionbt.com", 6881),
  ("router.utorrent.com", 6881)
)
TID_LENGTH = 2
RE_JOIN_DHT_INTERVAL = 3
TOKEN_LENGTH = 2


def entropy(length):
  return "".join(chr(randint(0, 255)) for _ in xrange(length))


def random_id():
  h = sha1()
  h.update(entropy(20))
  return h.digest()


def decode_nodes(nodes):
  n = []
  length = len(nodes)
  if (length % 26) != 0:
    return n

  for i in range(0, length, 26):
    nid = nodes[i:i+20]
    ip = inet_ntoa(nodes[i+20:i+24])
    port = unpack("!H", nodes[i+24:i+26])[0]
    n.append((nid, ip, port))

  return n


def timer(t, f):
  Timer(t, f).start()


def get_neighbor(target, nid, end=10):
  return target[:end]+nid[end:]


class KNode(object):

  def __init__(self, nid, ip, port):
    self.nid = nid
    self.ip = ip
    self.port = port


class DHTClient(Thread):

  def __init__(self, max_node_qsize):
    Thread.__init__(self)
    self.setDaemon(True)
    self.max_node_qsize = max_node_qsize
    self.nid = random_id()
    self.nodes = deque(maxlen=max_node_qsize)

  def send_krpc(self, msg, address):
    try:
      self.ufd.sendto(bencode(msg), address)
    except Exception:
      pass

  def send_find_node(self, address, nid=None):
    nid = get_neighbor(nid, self.nid) if nid else self.nid
    tid = entropy(TID_LENGTH)
    msg = {
      "t": tid,
      "y": "q",
      "q": "find_node",
      "a": {
        "id": nid,
        "target": random_id()
      }
    }
    self.send_krpc(msg, address)

  def join_DHT(self):
    for address in BOOTSTRAP_NODES:
      self.send_find_node(address)

  def re_join_DHT(self):
    if len(self.nodes) == 0:
      self.join_DHT()
    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)

  def auto_send_find_node(self):
    wait = 1.0 / self.max_node_qsize
    while True:
      try:
        node = self.nodes.popleft()
        self.send_find_node((node.ip, node.port), node.nid)
      except IndexError:
        pass
      sleep(wait)

  def process_find_node_response(self, msg, address):
    nodes = decode_nodes(msg["r"]["nodes"])
    for node in nodes:
      (nid, ip, port) = node
      if len(nid) != 20: continue
      if ip == self.bind_ip: continue
      if port < 1 or port > 65535: continue
      n = KNode(nid, ip, port)
      self.nodes.append(n)


class DHTServer(DHTClient):

  def __init__(self, master, bind_ip, bind_port, max_node_qsize):
    DHTClient.__init__(self, max_node_qsize)

    self.master = master
    self.bind_ip = bind_ip
    self.bind_port = bind_port

    self.process_request_actions = {
      "get_peers": self.on_get_peers_request,
      "announce_peer": self.on_announce_peer_request,
    }

    self.ufd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
    self.ufd.bind((self.bind_ip, self.bind_port))

    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)


  def run(self):
    self.re_join_DHT()
    while True:
      try:
        (data, address) = self.ufd.recvfrom(65536)
        msg = bdecode(data)
        self.on_message(msg, address)
      except Exception:
        pass

  def on_message(self, msg, address):
    try:
      if msg["y"] == "r":
        if msg["r"].has_key("nodes"):
          self.process_find_node_response(msg, address)
      elif msg["y"] == "q":
        try:
          self.process_request_actions[msg["q"]](msg, address)
        except KeyError:
          self.play_dead(msg, address)
    except KeyError:
      pass

  def on_get_peers_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      tid = msg["t"]
      nid = msg["a"]["id"]
      token = infohash[:TOKEN_LENGTH]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(infohash, self.nid),
          "nodes": "",
          "token": token
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def on_announce_peer_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      #print msg["a"]
      tname = msg["a"]["name"]
      token = msg["a"]["token"]
      nid = msg["a"]["id"]
      tid = msg["t"]

      if infohash[:TOKEN_LENGTH] == token:
        if msg["a"].has_key("implied_port") and msg["a"]["implied_port"] != 0:
          port = address[1]
        else:
          port = msg["a"]["port"]
          if port < 1 or port > 65535: return
        self.master.log(infohash, (address[0], port),tname)
    except Exception:
      pass
    finally:
      self.ok(msg, address)

  def play_dead(self, msg, address):
    try:
      tid = msg["t"]
      msg = {
        "t": tid,
        "y": "e",
        "e": [202, "Server Error"]
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def ok(self, msg, address):
    try:
      tid = msg["t"]
      nid = msg["a"]["id"]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(nid, self.nid)
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass


class Master(object):
  def log(self, infohash,address=None,tname=None):
    hexinfohash = infohash.encode("hex")
    print "info_hash is: %s,name is: %s from %s:%s" % (
      hexinfohash,tname, address[0], address[1]
  )
    print "magnet:&#63;xt=urn:btih:%s&dn=%s" % (hexinfohash, tname)


# using example
if __name__ == "__main__":
  # max_node_qsize bigger, bandwith bigger, speed higher
  dht = DHTServer(Master(), "0.0.0.0", 6882, max_node_qsize=200)
  dht.start()
  dht.auto_send_find_node()

PS:  DHT协议中有几个重点的需要澄清的地方:

1. node与infohash同样使用160bit的表示方式,160bit意味着整个节点空间有2^160 = 730750818665451459101842416358141509827966271488,是48位10进制,也就是说有百亿亿亿亿亿个节点空间,这么大的节点空间,是足够存放你的主机节点以及任意的资源信息的。

2. 每个节点有张路由表。每张路由表由一堆K桶组成,所谓K桶,就是桶中最多只能放K个节点,默认是8个。而桶的保存则是类似一颗前缀树的方式。相当于一张8桶的路由表中最多有160-4个K桶。

3. 根据DHT协议的规定,每个infohash都是有位置的,因此,两个infohash之间就有距离一说,而两个infohash的距离就可以用异或来表示,即infohash1 xor infohash2,也就是说,高位一样的话,他们的距离就近,反之则远,这样可以快速的计算两个节点的距离。计算这个距离有什么用呢,在DHT网络中,如果一个资源的infohash与一个节点的infohash越近则该节点越有可能拥有该资源的信息,为什么呢?可以想象,因为人人都用同样的距离算法去递归的询问离资源接近的节点,并且只要该节点做出了回应,那么就会得到一个announce信息,也就是说跟资源infohash接近的节点就有更大的概率拿到该资源的infohash

4. 根据上述算法,DHT中的查询是跳跃式查询,可以迅速的跨越的的节点桶而接近目标节点桶。之所以在远处能够大幅度跳跃,而在近处只能小幅度跳跃,原因是每个节点的路由表中离自身越接近的节点保存得越多,如下图

2016319115044824.jpg (490×417)

5. 在一个DHT网络中当爬虫并不容易,不像普通爬虫一样,看到资源就可以主动爬下来,相反,因为得到资源的方式(get_peers, announce_peer)都是被动的,所以爬虫的方式就有些变化了,爬虫所要做的事就是像个正常节点一样去响应其他节点的查询,并且得到其他节点的回应,把其中的数据收集下来就算是完成工作了。而爬虫唯一能做的,是尽可能的去多认识其他节点,这样,才能有更多其他节点来向你询问。

6. 有人说,那么我把DHT爬虫的K桶中的容量K增大是不是就能增加得到资源的机会,其实不然,之前也分析过了,DHT爬虫最重要的信息来源全是被动的,因为你不能增大别人的K,所以距离远的节点保存你自身的概率就越小,当然距离远的节点去请求你的概率相对也比较小。

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python의 병합 목록 : 올바른 메소드 선택Python의 병합 목록 : 올바른 메소드 선택May 14, 2025 am 12:11 AM

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서 두 목록을 연결하는 방법은 무엇입니까?Python 3에서 두 목록을 연결하는 방법은 무엇입니까?May 14, 2025 am 12:09 AM

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

Python은 문자열을 연결합니다Python은 문자열을 연결합니다May 14, 2025 am 12:08 AM

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

파이썬 실행, 그게 뭐야?파이썬 실행, 그게 뭐야?May 14, 2025 am 12:06 AM

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

파이썬 : 주요 기능은 무엇입니까?파이썬 : 주요 기능은 무엇입니까?May 14, 2025 am 12:02 AM

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경