概述
Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案。
Redis从它的许多竞争继承来的三个主要特点:
Redis数据库完全在内存中,使用磁盘仅用于持久性。
相比许多键值数据存储,Redis拥有一套较为丰富的数据类型。
Redis可以将数据复制到任意数量的从服务器。
Redis 优势
异常快速:Redis的速度非常快,每秒能执行约11万集合,每秒约81000+条记录。
支持丰富的数据类型:Redis支持最大多数开发人员已经知道像列表,集合,有序集合,散列数据类型。这使得它非常容易解决各种各样的问题,因为我们知道哪些问题是可以处理通过它的数据类型更好。
操作都是原子性:所有Redis操作是原子的,这保证了如果两个客户端同时访问的Redis服务器将获得更新后的值。
多功能实用工具:Redis是一个多实用的工具,可以在多个用例如缓存,消息,队列使用(Redis原生支持发布/订阅),任何短暂的数据,应用程序,如Web应用程序会话,网页命中计数等。
步入主题:
Redis作为内存数据库的一个典型代表,已经在很多应用场景中被使用,这里仅就Redis的pub/sub功能来说说怎样通过此功能来实现一个简单的作业调度系统。这里只是想展现一个简单的想法,所以还是有很多需要考虑的东西没有包括在这个例子中,比如错误处理,持久化等。
下面是实现上的想法
MyMaster:集群的master节点程序,负责产生作业,派发作业和获取执行结果。
MySlave:集群的计算节点程序,每个计算节点一个,负责获取作业并运行,并将结果发送会master节点。
channel CHANNEL_DISPATCH:每个slave节点订阅一个channel,比如“CHANNEL_DISPATCH_[idx或机器名]”,master会向此channel中publish被dispatch的作业。
channel CHANNEL_RESULT:用来保存作业结果的channel,master和slave共享此channel,master订阅此channel来获取作业运行结果,每个slave负责将作业执行结果发布到此channel中。
Master代码
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import threading import random import redis REDIS_HOST = 'localhost' REDIS_PORT = 6379 REDIS_DB = 0 CHANNEL_DISPATCH = 'CHANNEL_DISPATCH' CHANNEL_RESULT = 'CHANNEL_RESULT' class MyMaster(): def __init__(self): pass def start(self): MyServerResultHandleThread().start() MyServerDispatchThread().start() class MyServerDispatchThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): r = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB) for i in range(1, 100): channel = CHANNEL_DISPATCH + '_' + str(random.randint(1, 3)) print("Dispatch job %s to %s" % (str(i), channel)) ret = r.publish(channel, str(i)) if ret == 0: print("Dispatch job %s failed." % str(i)) time.sleep(5) class MyServerResultHandleThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): r = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB) p = r.pubsub() p.subscribe(CHANNEL_RESULT) for message in p.listen(): if message['type'] != 'message': continue print("Received finished job %s" % message['data']) if __name__ == "__main__": MyMaster().start() time.sleep(10000)
说明
MyMaster类 - master主程序,用来启动dispatch和resulthandler的线程
MyServerDispatchThread类 - 派发作业线程,产生作业并派发到计算节点
MyServerResultHandleThread类 - 作业运行结果处理线程,从channel里获取作业结果并显示
Slave代码
#!/usr/bin/env python # -*- coding: utf-8 -*- from datetime import datetime import time import threading import random import redis REDIS_HOST = 'localhost' REDIS_PORT = 6379 REDIS_DB = 0 CHANNEL_DISPATCH = 'CHANNEL_DISPATCH' CHANNEL_RESULT = 'CHANNEL_RESULT' class MySlave(): def __init__(self): pass def start(self): for i in range(1, 4): MyJobWorkerThread(CHANNEL_DISPATCH + '_' + str(i)).start() class MyJobWorkerThread(threading.Thread): def __init__(self, channel): threading.Thread.__init__(self) self.channel = channel def run(self): r = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB) p = r.pubsub() p.subscribe(self.channel) for message in p.listen(): if message['type'] != 'message': continue print("%s: Received dispatched job %s " % (self.channel, message['data'])) print("%s: Run dispatched job %s " % (self.channel, message['data'])) time.sleep(2) print("%s: Send finished job %s " % (self.channel, message['data'])) ret = r.publish(CHANNEL_RESULT, message['data']) if ret == 0: print("%s: Send finished job %s failed." % (self.channel, message['data'])) if __name__ == "__main__": MySlave().start() time.sleep(10000)
说明
MySlave类 - slave节点主程序,用来启动MyJobWorkerThread的线程
MyJobWorkerThread类 - 从channel里获取派发的作业并将运行结果发送回master
测试
首先运行MySlave来定义派发作业channel。
然后运行MyMaster派发作业并显示执行结果。
有关Python使用Redis实现作业调度系统(超简单),小编就给大家介绍这么多,希望对大家有所帮助!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.
