在Python所有的数据结构中,list具有重要地位,并且非常的方便,这篇文章主要是讲解list列表的高级应用,基础知识可以查看博客。
此文章为python英文文档的翻译版本,你也可以查看英文版:https://docs.python.org/2/tutorial/datastructures.html
use a list as a stack: #像栈一样使用列表
stack = [3, 4, 5] stack.append(6) stack.append(7) stack [3, 4, 5, 6, 7] stack.pop() #删除最后一个对象 7 stack [3, 4, 5, 6] stack.pop() 6 stack.pop() 5 stack [3, 4]
use a list as a queue: #像队列一样使用列表
> from collections import deque #这里需要使用模块deque > queue = deque(["Eric", "John", "Michael"]) > queue.append("Terry") # Terry arrives > queue.append("Graham") # Graham arrives > queue.popleft() # The first to arrive now leaves 'Eric' > queue.popleft() # The second to arrive now leaves 'John' > queue # Remaining queue in order of arrival deque(['Michael', 'Terry', 'Graham'])
three built-in functions: 三个重要的内建函数
filter(), map(), and reduce().
1)、filter(function, sequence)::
按照function函数的规则在列表sequence中筛选数据
> def f(x): return x % 3 == 0 or x % 5 == 0 ... #f函数为定义整数对象x,x性质为是3或5的倍数 > filter(f, range(2, 25)) #筛选 [3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24]
2)、map(function, sequence):
map函数实现按照function函数的规则对列表sequence做同样的处理,
这里sequence不局限于列表,元组同样也可。
> def cube(x): return x*x*x #这里是立方计算 还可以使用 x**3的方法 ... > map(cube, range(1, 11)) #对列表的每个对象进行立方计算 [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
注意:这里的参数列表不是固定不变的,主要看自定义函数的参数个数,map函数可以变形为:def func(x,y) map(func,sequence1,sequence2) 举例:
seq = range(8) #定义一个列表 > def add(x, y): return x+y #自定义函数,有两个形参 ... > map(add, seq, seq) #使用map函数,后两个参数为函数add对应的操作数,如果列表长度不一致会出现错误 [0, 2, 4, 6, 8, 10, 12, 14]
3)、reduce(function, sequence):
reduce函数功能是将sequence中数据,按照function函数操作,如 将列表第一个数与第二个数进行function操作,得到的结果和列表中下一个数据进行function操作,一直循环下去…
举例:
def add(x,y): return x+y ... reduce(add, range(1, 11)) 55
List comprehensions:
这里将介绍列表的几个应用:
squares = [x**2 for x in range(10)]
#生成一个列表,列表是由列表range(10)生成的列表经过平方计算后的结果。
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
#[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)] 这里是生成了一个列表,列表的每一项为元组,每个元组是由x和y组成,x是由列表[1,2,3]提供,y来源于[3,1,4],并且满足法则x!=y。
Nested List Comprehensions:
这里比较难翻译,就举例说明一下吧:
matrix = [ #此处定义一个矩阵 ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... ] [[row[i] for row in matrix] for i in range(4)] #[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
这里两层嵌套比较麻烦,简单讲解一下:对矩阵matrix,for row in matrix来取出矩阵的每一行,row[i]为取出每行列表中的第i个(下标),生成一个列表,然后i又是来源于for i in range(4) 这样就生成了一个列表的列表。
The del statement:
删除列表指定数据,举例:
> a = [-1, 1, 66.25, 333, 333, 1234.5] >del a[0] #删除下标为0的元素 >a [1, 66.25, 333, 333, 1234.5] >del a[2:4] #从列表中删除下标为2,3的元素 >a [1, 66.25, 1234.5] >del a[:] #全部删除 效果同 del a >a []
Sets: 集合
> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] >>> fruit = set(basket) # create a set without duplicates >>> fruit set(['orange', 'pear', 'apple', 'banana']) >>> 'orange' in fruit # fast membership testing True >>> 'crabgrass' in fruit False >>> # Demonstrate set operations on unique letters from two words ... >>> a = set('abracadabra') >>> b = set('alacazam') >>> a # unique letters in a set(['a', 'r', 'b', 'c', 'd']) >>> a - b # letters in a but not in b set(['r', 'd', 'b']) >>> a | b # letters in either a or b set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l']) >>> a & b # letters in both a and b set(['a', 'c']) >>> a ^ b # letters in a or b but not both set(['r', 'd', 'b', 'm', 'z', 'l'])
Dictionaries:字典
>>> tel = {'jack': 4098, 'sape': 4139} >>> tel['guido'] = 4127 #相当于向字典中添加数据 >>> tel {'sape': 4139, 'guido': 4127, 'jack': 4098} >>> tel['jack'] #取数据 4098 >>> del tel['sape'] #删除数据 >>> tel['irv'] = 4127 #修改数据 >>> tel {'guido': 4127, 'irv': 4127, 'jack': 4098} >>> tel.keys() #取字典的所有key值 ['guido', 'irv', 'jack'] >>> 'guido' in tel #判断元素的key是否在字典中 True >>> tel.get('irv') #取数据 4127
也可以使用规则生成字典:
>>> {x: x**2 for x in (2, 4, 6)} {2: 4, 4: 16, 6: 36}
enumerate():遍历元素及下标
enumerate 函数用于遍历序列中的元素以及它们的下标:
>>> for i, v in enumerate(['tic', 'tac', 'toe']): ... print i, v ... 0 tic 1 tac 2 toe
zip():
zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list unzip(解压)。
>>> questions = ['name', 'quest', 'favorite color'] >>> answers = ['lancelot', 'the holy grail', 'blue'] >>> for q, a in zip(questions, answers): ... print 'What is your {0}? It is {1}.'.format(q, a) ... What is your name? It is lancelot. What is your quest? It is the holy grail. What is your favorite color? It is blue.
有关zip举一个简单点儿的例子:
>>> a = [1,2,3] >>> b = [4,5,6] >>> c = [4,5,6,7,8] >>> zipped = zip(a,b) [(1, 4), (2, 5), (3, 6)] >>> zip(a,c) [(1, 4), (2, 5), (3, 6)] >>> zip(*zipped) [(1, 2, 3), (4, 5, 6)]
reversed():反转
>>> for i in reversed(xrange(1,10,2)): ... print i ...
sorted(): 排序
> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] > for f in sorted(set(basket)): #这里使用了set函数 ... print f ... apple banana orange pear
python的set和其他语言类似, 是一个 基本功能包括关系测试和消除重复元素.
To change a sequence you are iterating over while inside the loop (for example to duplicate certain items), it is recommended that you first make a copy. Looping over a sequence does not implicitly make a copy. The slice notation makes this especially convenient:
>>> words = ['cat', 'window', 'defenestrate'] >>> for w in words[:]: # Loop over a slice copy of the entire list. ... if len(w) > 6: ... words.insert(0, w) ... >>> words ['defenestrate', 'cat', 'window', 'defenestrate']
以上就是本文的全部内容,希望对大家的学习有所帮助。

inpython, youappendElementStoalistUsingTheAppend () 메소드 1) useappend () forsinglelements : my_list.append (4) .2) useextend () 또는 = formultiplementements : my_list.extend (other_list) 또는 my_list = [4,5,6] .3) useinsert () forspecificpositions : my_list.insert (1,5) .Bearware

Shebang 문제를 디버깅하는 방법에는 다음이 포함됩니다. 1. Shebang 라인을 확인하여 스크립트의 첫 번째 줄인지 확인하고 접두사 공간이 없는지 확인하십시오. 2. 통역 경로가 올바른지 확인하십시오. 3. 통역사에게 직접 전화하여 스크립트를 실행하여 Shebang 문제를 분리하십시오. 4. Strace 또는 Trusts를 사용하여 시스템 호출을 추적합니다. 5. Shebang에 대한 환경 변수의 영향을 확인하십시오.

pythonlistscanbemanipatedusingseveralmethodstoremoveElements : 1) geremove () methodremove () methodeMovestHefirstoccurrence.2) thePop () methodRemovesAndReTurnSanElementatAgivenIndex.3) THEDELSTATEMENTCANREMORENDEX.4) LESTCORHENSCREC

PythonlistscanstoreAnydatataTATY, 문자열, 부유물, 부울, 기타 목록 및 디터 시어

pythonlistssupportnumouseOperations : 1) addingElementSwitHappend (), extend (), andinsert ()

다음 단계를 통해 Numpy를 사용하여 다차원 배열을 만들 수 있습니다. 1) Numpy.array () 함수를 사용하여 NP.Array ([[1,2,3], [4,5,6]]과 같은 배열을 생성하여 2D 배열을 만듭니다. 2) np.zeros (), np.ones (), np.random.random () 및 기타 함수를 사용하여 특정 값으로 채워진 배열을 만듭니다. 3) 서브 어레이의 길이가 일관되고 오류를 피하기 위해 배열의 모양과 크기 특성을 이해하십시오. 4) NP.Reshape () 함수를 사용하여 배열의 모양을 변경하십시오. 5) 코드가 명확하고 효율적인지 확인하기 위해 메모리 사용에주의를 기울이십시오.

BroadcastingInnumpyIsamethodtoperformoperationsonArraysoffferentShapesByAutomicallyAligningThem.itsimplifiesCode, enourseadability, andboostsperformance.here'showitworks : 1) smalraysarepaddedwithonestomatchdimenseare

forpythondatastorage, chooselistsforflexibilitywithmixeddatatypes, array.arrayformemory-effic homogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatilebutlessefficipforlargenumericaldatasets.arrayoffersamiddlegro


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
