一、遍历索引树的每个节点都是一个页面。索引树有三种类型的节点:根节点、中间节点、叶子节点。(1)根节点与中间节点一样,只包含下一层节点的入口值与入口指针
一、遍历
索引树的每个节点都是一个页面。
索引树有三种类型的节点:根节点、中间节点、叶子节点。
(1) 根节点与中间节点一样,只包含下一层节点的入口值与入口指针,它们称为索引节点;
(2) 叶子节点包含要遍历的数据,服务器空间,对聚集索引而言数据就是表中数据行,对非聚集索引数据是指索引列值和行书签。
索引的遍历总是从根节点开始,即先根遍历,分为两种:索引扫描和索引查找。
(1) 索引扫描,是指从索引树的根节点开始,对叶子节点逐个扫描,直至命中所有满足查找条件的数据;
(2) 索引查找,是指从索引树的根节点开始,按查找值在索引节点中根据路由信息跳转,直至叶子节点以命中数据。
B+树的深度通常小于等于3,计算如下:
以聚集索引为例,简单计算如下:10个INT列宽度总和为40B,假设聚集索引树每一层为二叉,共三层,即2^0+2^1+2^2=1*(1-2^3)/(1-2)=7个页面,4个叶子节点,每个页面8060K可存储8060000/40=201500行,乘以4=806000行,如果是三叉、四叉,那么三层可存储上千万至亿行的数据,当然在数据量达到这个等级时,通常我们会选择表分区,那么B树深度就更不会突破三层了。
所以索引查找的效率是很高的,在查询中应该努力构造索引查找,避免索引扫描。
二、插入
2.1、页空间充足
在已存在数据的表上,创建或重建索引时,可指定填充因子,即在索引树的每个节点上预留一定的空间,供表中后续增加的数据使用。但如果在创建表的时候就创建了索引,并指定了填充因子,这时的填充因子是无用的,数据库系统不会刻意去保留页面的空间。
索引页面有剩余空间的情况如下图:
图1
参考图1,此时向索引树中插入一条索引键值为31的记录,步骤如下:
(1)执行索引键值=31的查找操作,确定该新记录应该插入到叶子节点L2中。
(2)检查L2上是否有足够的空间来存放当前记录,这里假设有足够的空间;
(3)将记录45向后移动,插入索引键值为31的新记录。插入之后,10、30、31、45还是顺序的,香港服务器,如下图:
图2
2.2、页空间不足
参加图2,此时再插入一条索引键值为32的记录,步骤如下:
(1)执行索引键值=32的查找操作,确定该新记录应该插入到叶子节点L2中;
(2)检查L2上是否有足够的空间来存放当前记录,这时发现没有足够的页空间,香港服务器,此时需要进行页面分裂;
(3)向数据库系统申请一个新的页面L4,将L2的一半数据移到L4中,并重新链接叶子的左右节点,如下图:
图3
(4)此时,上层节点也需要生成一个新的叶子节点的指针。这里的上层节点即根节点,如果上层节点没有剩余空间的话,同样也需要进行分裂,这里有剩余空间,如下图:
图4
(5)因为当前记录的键值范围位于页分裂的后一半中,将索引键值为32的新记录插入到L4中,如果键值范围位于前一半,则插入到L2中。如果L4的空间不够存放键值为32的新记录,则L4会继续进行页分裂,这里假设空间足够,插入结束,如下图:
图5
三、删除
3.1、删除叶子节点中的记录
参考图5,删除索引键值为32的记录,步骤如下:
(1)执行索引键值=32的查找操作,确定该记录在L4中;
(2)将索引键值=32的记录标记为虚影,但并不立即释放空间,虚影记录可用于事务回滚、多版本等;
(3)如果此时L4上的虚影记录空间被申请使用,虚影记录就会被擦除;
(4)如果数据页面最后一条记录也被删除,数据页面会被回收;
3.2、删除非叶子节点中的记录
(1)索引节点中的指针被删除时并不是虚影记录,但同样也不释放空间,直到有新的指针插入时,才会进行空间压缩;
(2)堆表中数据行被删除后,页空间不会被回收,即使是空闲分页也还是标识为分配状态,无法被其他对象使用;
注:从理论上讲,在兄弟节点页面空闲空间都小于50%时,应该将兄弟节点合并,即分裂的逆操作,但这样可能带来的后果是更频繁的页面合并、分裂,成本更大,所以在数据库系统中通常不进行页面合并操作,除非rebuild/reorganize索引。
四、更新
4.1、覆盖更新
如果更新操作能够在页内进行原位键值替换,那么就进行覆盖更新。
4.2、非覆盖更新
无法进行覆盖更新时,更新操作被分解为删除和插入操作。
如果非覆盖更新过程中,新的记录比较长,则会在页面分裂的过程中会带来数据行的移动:
(1)聚集索引的移动对非聚集索引没有影响,因为非聚集索引中存储的是聚集索引的键值,分裂并不会改变键值;
(2)堆表中的数据页分裂,会在原记录处留下一个前转指针,以告诉非聚集索引去哪里找新的记录;
所以数据行的移动对非聚集索引都不会带来维护的成本,非聚集索引的维护成本来自书签的变化:
(1)聚集索引的键值发生变化或被删除;
(2)堆表中的数据行被删除。
本文出自 “SQL Server DBA” 博客,请务必保留此出处

MySQL과 Sqlite의 주요 차이점은 설계 개념 및 사용 시나리오입니다. 1. MySQL은 대규모 응용 프로그램 및 엔터프라이즈 수준의 솔루션에 적합하며 고성능 및 동시성을 지원합니다. 2. SQLITE는 모바일 애플리케이션 및 데스크탑 소프트웨어에 적합하며 가볍고 내부질이 쉽습니다.

MySQL의 인덱스는 데이터 검색 속도를 높이는 데 사용되는 데이터베이스 테이블에서 하나 이상의 열의 주문 구조입니다. 1) 인덱스는 스캔 한 데이터의 양을 줄임으로써 쿼리 속도를 향상시킵니다. 2) B-Tree Index는 균형 잡힌 트리 구조를 사용하여 범위 쿼리 및 정렬에 적합합니다. 3) CreateIndex 문을 사용하여 CreateIndexIdx_customer_idonorders (customer_id)와 같은 인덱스를 작성하십시오. 4) Composite Indexes는 CreateIndexIdx_customer_orderOders (Customer_id, Order_Date)와 같은 다중 열 쿼리를 최적화 할 수 있습니다. 5) 설명을 사용하여 쿼리 계획을 분석하고 피하십시오

MySQL에서 트랜잭션을 사용하면 데이터 일관성이 보장됩니다. 1) STARTTRANSACTION을 통해 트랜잭션을 시작한 다음 SQL 작업을 실행하고 커밋 또는 롤백으로 제출하십시오. 2) SavePoint를 사용하여 부분 롤백을 허용하는 저장 지점을 설정하십시오. 3) 성능 최적화 제안에는 트랜잭션 시간 단축, 대규모 쿼리 방지 및 격리 수준을 합리적으로 사용하는 것이 포함됩니다.

MySQL 대신 PostgreSQL을 선택한 시나리오에는 다음이 포함됩니다. 1) 복잡한 쿼리 및 고급 SQL 기능, 2) 엄격한 데이터 무결성 및 산 준수, 3) 고급 공간 기능이 필요하며 4) 큰 데이터 세트를 처리 할 때 고성능이 필요합니다. PostgreSQL은 이러한 측면에서 잘 수행되며 복잡한 데이터 처리 및 높은 데이터 무결성이 필요한 프로젝트에 적합합니다.

MySQL 데이터베이스의 보안은 다음 조치를 통해 달성 할 수 있습니다. 1. 사용자 권한 관리 : CreateUser 및 Grant 명령을 통한 액세스 권한을 엄격히 제어합니다. 2. 암호화 된 전송 : 데이터 전송 보안을 보장하기 위해 SSL/TLS를 구성합니다. 3. 데이터베이스 백업 및 복구 : MySQLDump 또는 MySQLPump를 사용하여 정기적으로 백업 데이터를 사용하십시오. 4. 고급 보안 정책 : 방화벽을 사용하여 액세스를 제한하고 감사 로깅 작업을 가능하게합니다. 5. 성능 최적화 및 모범 사례 : 인덱싱 및 쿼리 최적화 및 정기 유지 보수를 통한 안전 및 성능을 모두 고려하십시오.

MySQL 성능을 효과적으로 모니터링하는 방법은 무엇입니까? Mysqladmin, Showglobalstatus, Perconamonitoring and Management (PMM) 및 MySQL Enterprisemonitor와 같은 도구를 사용하십시오. 1. MySQLADMIN을 사용하여 연결 수를보십시오. 2. showglobalstatus를 사용하여 쿼리 번호를보십시오. 3.pmm은 자세한 성능 데이터 및 그래픽 인터페이스를 제공합니다. 4. MySQLENTERPRISOMITOR는 풍부한 모니터링 기능 및 경보 메커니즘을 제공합니다.

MySQL과 SqlServer의 차이점은 1) MySQL은 오픈 소스이며 웹 및 임베디드 시스템에 적합합니다. 2) SQLServer는 Microsoft의 상용 제품이며 엔터프라이즈 수준 애플리케이션에 적합합니다. 스토리지 엔진의 두 가지, 성능 최적화 및 응용 시나리오에는 상당한 차이가 있습니다. 선택할 때는 프로젝트 규모와 향후 확장 성을 고려해야합니다.

고 가용성, 고급 보안 및 우수한 통합이 필요한 엔터프라이즈 수준의 응용 프로그램 시나리오에서는 MySQL 대신 SQLServer를 선택해야합니다. 1) SQLServer는 고 가용성 및 고급 보안과 같은 엔터프라이즈 수준의 기능을 제공합니다. 2) VisualStudio 및 Powerbi와 같은 Microsoft Ecosystems와 밀접하게 통합되어 있습니다. 3) SQLSERVER는 성능 최적화에서 우수한 성능을 발휘하며 메모리 최적화 된 테이블 및 열 스토리지 인덱스를 지원합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
