찾다
데이터 베이스MySQL 튜토리얼Hive与Oracle表关联语句对比

在将ORACLE存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。本文详细对比了ORALCE和HIVE的各种表关联语法,包

在将Oracle存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。

本文详细对比了ORALCE和HIVE的各种表关联语法,,包括内关联,左,右关联,全外关联和笛卡尔积。

一.创建表

ORACLE:

create table a
(
a1  number(10),
a2 varchar2(50)
);

create table b
(
b1  number(10),
b2 varchar2(50)
);

HIVE:

CREATE TABLE IF NOT EXISTS a (
a1 STRING,
a2 STRING)
COMMENT 'TABLE A'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ( 'created_at'='2014-04-28','creator'='HENRY' );

二.插入数据

ORACLE:

insert into a(a1,a2) values(1,'X');
insert into a(a1,a2) values(2,'Y');
insert into a(a1,a2) values(3,'Z');

insert into b(b1,b2) values(1,'X');
insert into b(b1,b2) values(2,'Y');
insert into b(b1,b2) values(4,'Z');

HIVE:

hive (default)> load data local inpath './data1' into table a;
Copying data from file:/home/Hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.a
Table default.a stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 1.961 seconds
hive (default)> load data local inpath './data1' into table b;
Copying data from file:/home/hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.b
Table default.b stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 0.392 seconds

其中data1数据文件内容为:

1|X
2|Y
3|Z

data2数据文件内容为:

1|X
2|Y
4|Z

三.等值关联

ORACLE:

select * from a,b where a.a1 = b.b1;

或:

select * from a join b on a.a1 = b.b1;

结果如下图所示:

 

HIVE:

select * from a join b on a.a1 = b.b1;

注意HIVE中不能使用where来表示关联条件。

执行过程及结果如下图所示:

hive (default)> select * from a join b on a.a1 = b.b1;       
Total MapReduce jobs = 1
setting HADOOP_USER_NAME        hadoop
Execution log at: /tmp/hadoop/.log
2014-04-29 09:13:27    Starting to launch local task to process map join;      maximum memory = 1908932608
2014-04-29 09:13:27    Processing rows:        3      Hashtable size: 3      Memory usage:  110981704      rate:  0.058
2014-04-29 09:13:27    Dump the hashtable into file: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable
2014-04-29 09:13:27    Upload 1 File to: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable File size: 438
2014-04-29 09:13:27    End of local task; Time Taken: 0.339 sec.
Execution completed successfully
Mapred Local Task Succeeded . Convert the Join into MapJoin
Mapred Local Task Succeeded . Convert the Join into MapJoin
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201404251509_0131, Tracking URL = IP:50030/jobdetails.jsp?jobid=job_201404251509_0131
Kill
Command = /home/hadoop/package/hadoop-1.0.4/libexec/../bin/hadoop job  -kill job_201404251509_0131
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2014-04-29 09:13:39,979 Stage-3 map = 0%,  reduce = 0%
2014-04-29 09:13:46,025 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:47,034 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:48,044 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:49,052 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:50,061 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:51,069 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:52,077 Stage-3 map = 100%,  reduce = 100%, Cumulative CPU 1.59 sec
MapReduce Total cumulative CPU time: 1 seconds 590 msec
Ended Job = job_201404251509_0131
MapReduce Jobs Launched:
Job 0: Map: 1  Cumulative CPU: 1.59 sec  HDFS Read: 211 HDFS Write: 16 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 590 msec
OK
a1      a2      b1      b2
1      X      1      X
2      Y      2      Y

更多详情见请继续阅读下一页的精彩内容

linux

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL에서 뷰를 사용하는 한계는 무엇입니까?MySQL에서 뷰를 사용하는 한계는 무엇입니까?May 14, 2025 am 12:10 AM

mysqlviewshavelimitations : 1) 그들은 upportallsqloperations, datamanipulation throughviewswithjoinsorbqueries를 제한하지 않습니다

MySQL 데이터베이스 확보 : 사용자 추가 및 권한 부여MySQL 데이터베이스 확보 : 사용자 추가 및 권한 부여May 14, 2025 am 12:09 AM

적절한 usermanagementInmysqliscrucialforenhancingsecurityandensuringfefficientDatabaseOperation.1) USECREATEUSERTOWDDUSERS,@'localHost'or@'%'.

MySQL에서 사용할 수있는 트리거 수에 영향을 미치는 요인은 무엇입니까?MySQL에서 사용할 수있는 트리거 수에 영향을 미치는 요인은 무엇입니까?May 14, 2025 am 12:08 AM

mysqldoes notimposeahardlimitontriggers, butpracticalfactorsdeteirefectiveuse : 1) ServerConfigurationimpactStriggerManagement; 2) 복잡한 트리거 스케일 스케일 사이드로드; 3) argertableSlowtriggerTriggerPerformance; 4) High ConconcercencyCancaUspriggerContention; 5) m

MySQL : Blob을 저장하는 것이 안전합니까?MySQL : Blob을 저장하는 것이 안전합니까?May 14, 2025 am 12:07 AM

예, It 'safetostoreBlobdatainmysql, butconsidertheStefactors : 1) StoragesPace : BlobScanconSumeSignificantspace, 잠재적으로 증가하는 CostsandSlownperformance

MySQL : PHP 웹 인터페이스를 통해 사용자 추가MySQL : PHP 웹 인터페이스를 통해 사용자 추가May 14, 2025 am 12:04 AM

PHP 웹 인터페이스를 통해 MySQL 사용자를 추가하면 MySQLI 확장 기능을 사용할 수 있습니다. 단계는 다음과 같습니다. 1. MySQL 데이터베이스에 연결하고 MySQLI 확장자를 사용하십시오. 2. 사용자를 생성하고 CreateUser 문을 사용하고 Password () 함수를 사용하여 암호를 암호화하십시오. 3. SQL 주입 방지 및 MySQLI_REAL_ESCAPE_STRING () 함수를 사용하여 사용자 입력을 처리하십시오. 4. 새 사용자에게 권한을 할당하고 보조금 명세서를 사용하십시오.

MySQL : Blob 및 기타없는 SQL 스토리지, 차이점은 무엇입니까?MySQL : Blob 및 기타없는 SQL 스토리지, 차이점은 무엇입니까?May 13, 2025 am 12:14 AM

mysql'sblobissuilableforstoringbinarydatawithinareldatabase, whilenosqloptionslikemongodb, redis, and cassandraofferflexible, scalablesolutionsforunstuctureddata.blobissimplerbutcanslowwownperformance를 사용하는 것들보업 betterscal randaysand

MySQL 추가 사용자 : 구문, 옵션 및 보안 모범 사례MySQL 추가 사용자 : 구문, 옵션 및 보안 모범 사례May 13, 2025 am 12:12 AM

TOADDAUSERINMYSQL, 사용 : CreateUser'UserName '@'host'IdentifiedBy'Password '; 여기서'showTodoitseciRely : 1) ChoosetheHostCareLyTocon trolaccess.2) setResourcelimitswithOptionslikemax_queries_per_hour.3) Usestrong, iriquepasswords.4) enforcessl/tlsconnectionswith

MySQL : 문자열 데이터 유형을 피하는 방법 일반적인 실수?MySQL : 문자열 데이터 유형을 피하는 방법 일반적인 실수?May 13, 2025 am 12:09 AM

toavoidcommonmistakeswithstringdatatypesinmysql, stroundStringTypenuances, chooseTherightType, andManageEncodingAndCollationSettingSefectively.1) usecharforfixed-lengthstrings, varcharvariable-length, andtext/blobforlargerdata.2) setcarcatter

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음