多表关联和单表关联类似,它也是通过对原始数据进行一定的处理,从其中挖掘出关心的信息。如下 输入的是两个文件,一个代表工厂表,包含工厂名列和地址编号列;另一个代表地址表,包含地址名列和地址编号列。要求从输入数据中找出工厂名和地址名的对应关系,
多表关联和单表关联类似,它也是通过对原始数据进行一定的处理,从其中挖掘出关心的信息。如下
输入的是两个文件,一个代表工厂表,包含工厂名列和地址编号列;另一个代表地址表,包含地址名列和地址编号列。要求从输入数据中找出工厂名和地址名的对应关系,输出工厂名-地址名表
样本如下:
factory:
factoryname addressed Beijing Red Star 1 Shenzhen Thunder 3 Guangzhou Honda 2 Beijing Rising 1 Guangzhou Development Bank 2 Tencent 3 Back of Beijing 1
address:
addressID addressname 1 Beijing 2 Guangzhou 3 Shenzhen 4 Xian
结果:
factoryname addressname Beijing Red Star Beijing Beijing Rising Beijing Bank of Beijing Beijing Guangzhou Honda Guangzhou Guangzhou Development Bank Guangzhou Shenzhen Thunder Shenzhen Tencent Shenzhen
代码如下:
import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin { public static int time = 0; /* * 在map中先区分输入行属于左表还是右表,然后对两列值进行分割, * 保存连接列在key值,剩余列和左右表标志在value中,最后输出 */ public static class Map extends Mapper { // 实现map函数 public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString();// 每行文件 String relationtype = new String();// 左右表标识 // 输入文件首行,不处理 if (line.contains("factoryname") == true || line.contains("addressed") == true) { return; } // 输入的一行预处理文本 StringTokenizer itr = new StringTokenizer(line); String mapkey = new String(); String mapvalue = new String(); int i = 0; while (itr.hasMoreTokens()) { // 先读取一个单词 String token = itr.nextToken(); // 判断该地址ID就把存到"values[0]" if (token.charAt(0) >= '0' && token.charAt(0) 0) { relationtype = "1"; } else { relationtype = "2"; } continue; } // 存工厂名 mapvalue += token + " "; i++; } // 输出左右表 context.write(new Text(mapkey), new Text(relationtype + "+"+ mapvalue)); } } /* * reduce解析map输出,将value中数据按照左右表分别保存, * 然后求出笛卡尔积,并输出。 */ public static class Reduce extends Reducer { // 实现reduce函数 public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { // 输出表头 if (0 == time) { context.write(new Text("factoryname"), new Text("addressname")); time++; } int factorynum = 0; String[] factory = new String[10]; int addressnum = 0; String[] address = new String[10]; Iterator ite = values.iterator(); while (ite.hasNext()) { String record = ite.next().toString(); int len = record.length(); int i = 2; if (0 == len) { continue; } // 取得左右表标识 char relationtype = record.charAt(0); // 左表 if ('1' == relationtype) { factory[factorynum] = record.substring(i); factorynum++; } // 右表 if ('2' == relationtype) { address[addressnum] = record.substring(i); addressnum++; } } // 求笛卡尔积 if (0 != factorynum && 0 != addressnum) { for (int m = 0; m <pre class="brush:php;toolbar:false"> javac -classpath hadoop-core-1.1.2.jar:/opt/hadoop-1.1.2/lib/commons-cli-1.2.jar -d firstProject firstProject/MTJoin.java
jar -cvf MTJoin.jar -C firstProject/ .
删除已经存在的output
hadoop fs -rmr output
hadoop fs -mkdir input
hadoop fs -put factory input
hadoop fs -put address input
运行
hadoop jar MTJoin.jar MTJoin input output
查看结果
hadoop fs -cat output/part-r-00000
?
作者:a331251021 发表于2013-8-4 16:20:52 原文链接
阅读:72 评论:0 查看评论
原文地址:hadoop实例---多表关联, 感谢原作者分享。

todropaViewInmysql, "dropviewifexistsview_name;"및 TomodifyAview를 사용하고 "createOrreplaceViewView_NameAsselect ...". "

mysqlViewScaneFeficTicallyINGILIDESIGNPATTORNSLIKEADAPTER, DECIARATOR, FACTORY 및 OBSERVER.1) AdapterPatternAdAptSDataFromDifferentTablesinToAunifiedView.2) Decor

viewsinmysqlarebeneficialforsimplifyingcomplexqueries, envancingsecurity, dataconsistency, andoptimizing promperformance

toeteimpleviewinmysql, usethecreateviewstatement.1) definetheviewwithReateViewview_nameas.2) specifyTesLectStatementToreTrievesiredData.3) usetheViewLikeAtableForqueries.ViewsSimplifyDataAccessAndenHances, ButconSiderFormance

toCreateUserSinmysql, usethecreateuserstatement.1) foralocaluser : createUser'LocalUser '@'localHost'IndifiedBy'SecurePassword '; 2) foremoteUser : createUser'RemoteUser'@'%'reidentifiedBy'StrongPassword ';

mysqlviewshavelimitations : 1) 그들은 upportallsqloperations, datamanipulation throughviewswithjoinsorbqueries를 제한하지 않습니다

적절한 usermanagementInmysqliscrucialforenhancingsecurityandensuringfefficientDatabaseOperation.1) USECREATEUSERTOWDDUSERS,@'localHost'or@'%'.

mysqldoes notimposeahardlimitontriggers, butpracticalfactorsdeteirefectiveuse : 1) ServerConfigurationimpactStriggerManagement; 2) 복잡한 트리거 스케일 스케일 사이드로드; 3) argertableSlowtriggerTriggerPerformance; 4) High ConconcercencyCancaUspriggerContention; 5) m


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는