1. Impala架构 Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Eng
1. Impala架构
Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。其架构如图 1所示,Impala主要由Impalad, State Store和CLI组成。
图 1
Impalad: 与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它Impalad进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。
Impala State Store: 跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。
CLI: 提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC, ODBC使用接口。
2. 与Hive的关系
Impala与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。Impala与Hive在Hadoop中的关系如图 2所示。Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据分析人员提供了快速实验、验证想法的大数据分析工具。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。
图 2
3. Impala的查询处理过程
Impalad分为Java前端与C++处理后端,接受客户端连接的Impalad即作为这次查询的Coordinator,Coordinator通过JNI调用Java前端对用户的查询SQL进行分析生成执行计划树,不同的操作对应不用的PlanNode, 如:SelectNode, ScanNode, SortNode, AggregationNode, HashJoinNode等等。
执行计划树的每个原子操作由一个PlanFragment表示,通常一条查询语句由多个Plan Fragment组成, Plan Fragment 0表示执行树的根,汇聚结果返回给用户,执行树的叶子结点一般是Scan操作,分布式并行执行。
Java前端产生的执行计划树以Thrift数据格式返回给Impala C++后端(Coordinator)(执行计划分为多个阶段,每一个阶段叫做一个PlanFragment,每一个PlanFragment在执行时可以由多个Impalad实例并行执行(有些PlanFragment只能由一个Impalad实例执行,如聚合操作),整个执行计划为一执行计划树),由Coordinator根据执行计划,数据存储信息(Impala通过libhdfs与HDFS进行交互。通过hdfsGetHosts方法获得文件数据块所在节点的位置信息),通过调度器(现在只有simple-scheduler, 使用round-robin算法)Coordinator::Exec对生成的执行计划树分配给相应的后端执行器Impalad执行(查询会使用LLVM进行代码生成,编译,执行。对于使用LLVM如何提高性能这里有说明),通过调用GetNext()方法获取计算结果,如果是insert语句,则将计算结果通过libhdfs写回HDFS当所有输入数据被消耗光,执行结束,之后注销此次查询服务。
Impala的查询处理流程大概如图3所示:
图 3
下面以一个SQL查询语句为例分析Impala的查询处理流程。如select sum(id), count(id), avg(id) from customer_small group by id; 以此语句生成的计划为:
PLAN FRAGMENT 0
PARTITION: UNPARTITIONED4:EXCHANGE
tuple ids: 1PLAN FRAGMENT 1
PARTITION: HASH_PARTITIONED:STREAM DATA SINK
EXCHANGE ID: 4
UNPARTITIONED3:AGGREGATE
| output: SUM(), SUM( )
| group by:
| tuple ids: 1
|
2:EXCHANGE
tuple ids: 1PLAN FRAGMENT 2
PARTITION: RANDOMSTREAM DATA SINK
EXCHANGE ID: 2
HASH_PARTITIONED:1:AGGREGATE
| output: SUM(id), COUNT(id)
| group by: id
| tuple ids: 1
|
0:SCAN HDFS
table=default.customer_small #partitions=1 size=193B
tuple ids: 0
执行行计划树如图 4所示, 绿色的部分为可以分布式并行执行:
图 4
4. Impala相对于Hive所使用的优化技术
1、没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
2、使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
3、充分利用可用的硬件指令(SSE4.2)。
4、更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
5、通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
6、最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。
5. Impala与Hive的异同
数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
元数据:两者使用相同的元数据。
SQL解释处理:比较相似都是通过词法分析生成执行计划。
执行计划:
Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。
数据流:
Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。
内存使用:
Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。
调度:
Hive: 任务调度依赖于Hadoop的调度策略。
Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。
容错:
Hive: 依赖于Hadoop的容错能力。
Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。
适用面:
Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
6. Impala的优缺点
优点:
- 支持SQL查询,快速查询大数据。
- 可以对已有数据进行查询,减少数据的加载,转换。
- 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
- 可以与Hive配合使用。
缺点:
- 不支持用户定义函数UDF。
- 不支持text域的全文搜索。
- 不支持Transforms。
- 不支持查询期的容错。
- 对内存要求高。
原文地址:Impala与Hive的比较, 感谢原作者分享。

Golang中最好的缓存库是什么?我们来一一比较。在编写Go代码时,经常需要使用缓存,例如存放一些比较耗时的计算结果或者从数据库中读取的数据等,缓存能够大大提高程序的性能。但是,Go语言没有提供原生的缓存库,所以我们需要使用第三方的缓存库。在这篇文章中,我们将一一比较几个比较流行的Go缓存库,找到最适合我们的库。GocacheGocache是一个高效的内存缓

如何通过PHP在FTP服务器上进行目录和文件的比较在web开发中,有时候我们需要比较本地文件与FTP服务器上的文件,以确保两者之间的一致性。PHP提供了一些函数和类来实现这个功能。本文将介绍如何使用PHP在FTP服务器上进行目录和文件的比较,并提供相关的代码示例。首先,我们需要连接到FTP服务器。PHP提供了ftp_connect()函数来建立与FTP服务器

随着Web开发的需求不断增加,各种语言的Web框架也逐渐多样化,Go语言也不例外。在许多Go语言的Web框架中,gin、echo和iris是三个最受欢迎的框架。在这篇文章中,我们将比较这三个框架的优缺点,以帮助您选择适合您的项目的框架。gingin是一个轻量级的Web框架,它具有高性能和灵活性的特点。它支持中间件和路由功能,这使得它非常适合构建RESTful

在移动应用开发领域,Flutter和uniapp是两个备受关注的跨平台开发框架。它们的出现使得开发者能够快速且高效地开发同时支持多个平台的应用程序。然而,尽管它们有着相似的目标和用途,但在细节和特性方面存在一些差异。接下来,我们将深入比较Flutter和uniapp,并探讨它们各自的特点。Flutte是由Google推出的开源移动应用开发框架。Flutter

MySQL和Oracle:对于数据加密和安全传输的支持程度比较引言:数据安全在如今的信息时代中变得愈发重要。从个人隐私到商业机密,保持数据的机密性和完整性对于任何组织来说都至关重要。在数据库管理系统(DBMS)中,MySQL和Oracle是两个最受欢迎的选项。在本文中,我们将比较MySQL和Oracle在数据加密和安全传输方面的支持程度,并提供一些代码示例。

用户必须输入两个矩阵的顺序以及两个矩阵的元素。然后,比较这两个矩阵。如果矩阵元素和大小都相等,则表明两个矩阵相等。如果矩阵大小相等但元素相等不相等,则显示矩阵可以比较,但不相等。如果大小和元素不匹配,则显示矩阵无法比较。程序以下是C程序,用于比较两个矩阵是否相等-#include<stdio.h>#include<conio.h>main(){ intA[10][10],B[10][10]; in

StringBuffer对象通常可以安全地在多线程环境中使用,其中多个线程可能会尝试访问同一个StringBuffer对象同时。StringBuilder是线程安全的StringBuffer类的替代品,它的工作速度要快得多,因为它没有同步>方法。如果我们在单个线程中执行大量字符串操作,则使用此类可以提高性能。示例publicclassCompareBuilderwithBufferTest{ publicstaticvoidmain(String[]a

Vue统计图表的排名和比较功能实现在数据可视化领域中,统计图表是一种直观清晰地展示数据的方式。Vue作为一种流行的前端框架,提供了丰富的工具和组件来实现各种图表。本文将介绍如何使用Vue实现统计图表的排名和比较功能。在开始之前,我们需要先安装Vue和相关的图表库。我们将使用Chart.js作为图表库,该库提供了丰富的图表类型和交互功能。可以通过以下命令安装C


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Dreamweaver Mac版
시각적 웹 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전
