在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable类,深入的分析了Writable类序列化之后占用的字节空间以及字节序列的构成。我们指出Hadoop序列化是Hadoop的核心部分之一,了解和分析Wri
在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable类,深入的分析了Writable类序列化之后占用的字节空间以及字节序列的构成。我们指出Hadoop序列化是Hadoop的核心部分之一,了解和分析Writable类的相关知识有助于我们理解Hadoop序列化的工作方式以及选择合适的Writable类作为MapReduce的键和值,以达到高效利用磁盘空间以及快速读写对象。因为在数据密集型计算中,在网络数据的传输是影响计算效率的一个重要因素,选择合适的Writable对象不但减小了磁盘空间,而且更重要的是其减小了需要在网络中传输的数据量,从而加快了程序的速度。
在本文中我们介绍另外一种方法加快程序的速度,这就是使用RawComparator加速Hadoop程序。我们知道作为键(Key)的Writable类必须实现WritableComparable接口,以实现对键进行排序的功能。Writable类进行比较时,Hadoop的默认方式是先将序列化后的对象字节流反序列化为对象,然后再进行比较(compareTo方法),比较过程需要一个反序列化的步骤。RawComparator的做法是不进行反序列化,而是在字节流层面进行比较,这样就省下了反序列化过程,从而加速程序的运行。Hadoop自身提供的IntWritable、LongWritabe等类已经实现了这种优化,使这些Writable类作为键进行比较时,直接使用序列化的字节数组进行比较大小,而不用进行反序列化。
RawComparator的实现
在Hadoop中编写Writable的RawComparator一般不直接继承RawComparator类,而是继承RawComparator的子类WritableComparator,因为WritableComparator类为我们提供了一些有用的工具方法,比如从字节数组中读取int、long和vlong等值。下面是上两篇文章中我们定制的MyWritable类的RawComparator实现,定制的MyWritable由两个VLongWritable对组成,为了添加RawComparator功能,Writable类必须实现WritableComparable接口,这里不再展示实现了WritableComparable接口的MyWritableComparable类的全部内容,而只是MyWritableComparable类中Comparator的实现,完整的代码可以在github中找到。
...//omitted for conciseness
/**
* A RawComparator that compares serialized VlongWritable Pair
* compare method decode long value from serialized byte array one by one
*
* @author yoyzhou
*
* */
public static class Comparator extends WritableComparator {
public Comparator() {
super(MyWritableComparable.class);
}
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
int cmp = 1;
//determine how many bytes the first VLong takes
int n1 = WritableUtils.decodeVIntSize(b1[s1]);
int n2 = WritableUtils.decodeVIntSize(b2[s2]);
try {
//read value from VLongWritable byte array
long l11 = readVLong(b1, s1);
long l21 = readVLong(b2, s2);
cmp = l11 > l21 ? 1 : (l11 == l21 ? 0 : -1);
if (cmp != 0) {
return cmp;
} else {
long l12 = readVLong(b1, s1 + n1);
long l22 = readVLong(b2, s2 + n2);
return cmp = l12 > l22 ? 1 : (l12 == l22 ? 0 : -1);
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
static { // register this comparator
WritableComparator.define(MyWritableComparable.class, new Comparator());
}
...
通过上面的代码我们可以看到要实现Writable的RawComparator我们只需要重载WritableComparator的public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)
方法。在我们的例子中,通过从VLongWritable对序列化后字节数组中一个一个的读取VLongWritable的值,再进行比较。
当然编写完compare方法之后,不要忘了为Writable类注册编写的RawComparator类。
总结
为Writable类编写RawComparator必须对Writable本身序列化之后的字节数组有清晰的了解,知道如何从字节数组中读取Writable对象的值,而这正是我们前两篇关于Hadoop序列化和Writable接口的文章所要阐述的内容。
通过以上的三篇文章,我们了解了Hadoop Writable接口,如何编写自己的Writable类,Writable类的字节序列长度与其构成,以及如何为Writable类编写RawComparator来为Hadoop提速。
参考资料
Tom White, Hadoop: The Definitive Guide, 3rd Edition
Hadoop序列化与Writable接口(一)
Hadoop序列化与Writable接口(二)
--EOF--
原文地址:使用RawComparator加速Hadoop程序, 感谢原作者分享。

mysqlStringTypESmpactStorageAndperformanceAsfollows : 1) charisfixed, adlaysamestoragespace.

mysqlstringtypesincludevarchar, text, char, enum, and set.1) varcharisversatileforvariable-lengthstringsupciedlimit.2) textisidealforlargetextStorage whithoudfinedlength.3) charisfixed, witableforconsistentDatalikecodes.4)

mysqloffersvariousstringdatatatypes : 1) charfixed-lengthstrings, 2) varcharforvariable-lengthtext, 3) binaryandvarbinaryforbinarydata, 4) blobandtextforlargedata 및 5) enumandsetforcontrolledInput.achtolledinput.CheachorciCificusessandperististicatististicatististics

ToadDuserSinMySqleFeffectially, 다음에 따르면, 다음 사항을 따르십시오

toaddanewuser와 함께 complexpermissionsinmysql, followthesesteps : 1) createShereuser'NewUser '@'localhost'Identifiedby'pa ssword ';. 2) grantreadaccesstoalltablesin'mydatabase'withgrantselectonmydatabase.to'newuser'@'localhost';. 3) GrantWriteAccessto '

MySQL의 문자열 데이터 유형에는 char, varchar, binary, varbinary, blob 및 텍스트가 포함됩니다. 콜라이트는 문자열의 비교와 분류를 결정합니다. 1. 차량은 고정 길이 스트링에 적합하고 Varchar는 가변 길이 스트링에 적합합니다. 2. 이진 및 바이너리는 이진 데이터에 사용되며 Blob 및 텍스트는 큰 객체 데이터에 사용됩니다. 3. UTF8MB4_UNICODE_CI와 같은 정렬 규칙은 상류 및 소문자를 무시하며 사용자 이름에 적합합니다. UTF8MB4_BIN은 사례에 민감하며 정확한 비교가 필요한 필드에 적합합니다.

가장 좋은 mysqlvarchar 열 길이 선택은 데이터 분석을 기반으로하고, 향후 성장을 고려하고, 성능 영향을 평가하고, 문자 세트 요구 사항을 기반으로해야합니다. 1) 일반적인 길이를 결정하기 위해 데이터를 분석합니다. 2) 미래 확장 공간을 예약하십시오. 3) 성능에 대한 큰 길이의 영향에주의를 기울이십시오. 4) 문자 세트가 스토리지에 미치는 영향을 고려하십시오. 이러한 단계를 통해 데이터베이스의 효율성과 확장 성을 최적화 할 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)