찾다

Hadoop Rumen介绍

Jun 07, 2016 pm 04:29 PM
hadoop소개하다작가웨이보시나

作者: Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明 网址:http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/ 什么是Hadoop Rumen? Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具

什么是Hadoop Rumen?

Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具,它能够将JobHistory 日志解析成有意义的数据并格式化存储。Rumen可以单独使用,但通常作为其他组件,比如GridMix (v3) 和 Mumak的基础库。

Hadoop Rumen设计动机

对于任何一个工作在Hadoop之上的外部工具,分析JobHistory日志都是必须的工作之一。基于这点考虑,Hadoop应内嵌一个JobHistory日志分析工具。

统计分析MapReduce作业的各种属性,比如任务运行时间、任务失败率等,通常是基准测试或者模拟器必备的功能,Hadoop Rumen可以为任务生成Cumulative Distribution Functions (CDF),这可以用于推断不完整的、失败的或者丢失的任务。

Hadoop Rumen基本构成

Hadoop Rumen已经内置在Apache Hadoop 1.0之上(包括0.21.x,0.22.x,CDH3)各个版本中,位于org.apache.hadoop.tools.rumen包中,通常被Hadoop打包成独立的jar包hadoop-tools-[VERSION].jar。Hadoop Rumen由两部分组成:

(1) Trace Builder

将JobHistory日志解析成易读的格式,当前仅支持json格式。Trace Builder的输出被称为job trace(作业运行踪迹),我们通过job trace很容易模拟(还原)作业的整个运行过程。

(2) ?Folder

将job trace按时间进行压缩或者扩张。这个还是为了方便其他组件,比如GridMix (v3) 和 Mumak,使用。Folder可以将作业运行过程进行等比例缩放,以便在更短的时间内模拟作业运行过程。

试用Hadoop Rumen

你可以通过两种方式运行Rumen,一种是使用集成化(综合所有功能)的HadoopLogsAnalyzer类,在很多Hadoop版本中,这个类已经过期,不推荐使用,另一种是使用TraceBuilder和Folder类。它们的运行方式基本类似,下面以HadoopLogsAnalyzer类为例进行说明:

bin/hadoop org.apache.hadoop.tools.rumen.HadoopLogsAnalyzer -v1 -write-job-trace file:///tmp/job-trace.json -write-topology file:///tmp/topology.json file:///software/hadoop/logs/history/done/

其中,“-v1”表示采用version 1的JobHsitory格式,如果你的Hadoop版本是0.20.x系列,则需要加这个参数,“-write-job-trace”是输出的job trace存放位置,“-write-topology”是拓扑结构存放位置,Rumen能够通过分析JobHistory中所有文件得到Hadoop集群的拓扑结构。最后一项紧跟你的JobHistory 中done目录存放位置,一般在${HDOOP_LOG}/history/done中,如果在本地磁盘,则需在目录前加前缀file://,如果在HDFS上需在目录前加前缀“hdfs://”。

下面是截取的job-trace.json和topology.json文件内容:

【job-trace.json】

“priority” : “NORMAL”,
“jobID” : “job_201301061549_0003″,
“mapTasks” : [ {
"attempts" : [ {
"location" : null,
"hostName" : "HADOOP001",
"startTime" : 1357460454343,
"finishTime" : 1357460665299,
"result" : "KILLED",
"shuffleFinished" : -1,
"sortFinished" : -1,
"attemptID" : "attempt_201301061549_0003_m_000000_0",
"hdfsBytesRead" : -1,
"hdfsBytesWritten" : -1,
"fileBytesRead" : -1,
"fileBytesWritten" : -1,
"mapInputRecords" : -1,
"mapOutputBytes" : -1,
"mapOutputRecords" : -1,
"combineInputRecords" : -1,
"reduceInputGroups" : -1,
"reduceInputRecords" : -1,
"reduceShuffleBytes" : -1,
"reduceOutputRecords" : -1,
"spilledRecords" : -1,
"mapInputBytes" : -1
} ],
“preferredLocations” : [ ],
“startTime” : 1357460454686,
“finishTime” : -1,
“inputBytes” : -1,
“inputRecords” : -1,
“outputBytes” : -1,
“outputRecords” : -1,
“taskID” : “task_201301061549_0003_m_000000″,
“numberMaps” : -1,
“numberReduces” : -1,
“taskStatus” : null,
“taskType” : “MAP”
}, {
….

【topology.json】

{
“name” : “<root>”,
“children” : [ {
"name" : "default-rack",
"children" : [ {
"name" : " HADOOP001",
"children" : null
}, {
"name" : " HADOOP002",
"children" : null
}, {
"name" : HADOOP003",
"children" : null
}, {
"name" : " HADOOP004",
"children" : null
}, {
"name" : " HADOOP005",
"children" : null
}, {
"name" : " HADOOP006",
"children" : null
} ]
} ]
}</root>

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/

作者:Dong,作者介绍:http://dongxicheng.org/about/


Copyright © 2012
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)
성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL : Blob 및 기타없는 SQL 스토리지, 차이점은 무엇입니까?MySQL : Blob 및 기타없는 SQL 스토리지, 차이점은 무엇입니까?May 13, 2025 am 12:14 AM

mysql'sblobissuilableforstoringbinarydatawithinareldatabase, whilenosqloptionslikemongodb, redis, and cassandraofferflexible, scalablesolutionsforunstuctureddata.blobissimplerbutcanslowwownperformance를 사용하는 것들보업 betterscal randaysand

MySQL 추가 사용자 : 구문, 옵션 및 보안 모범 사례MySQL 추가 사용자 : 구문, 옵션 및 보안 모범 사례May 13, 2025 am 12:12 AM

TOADDAUSERINMYSQL, 사용 : CreateUser'UserName '@'host'IdentifiedBy'Password '; 여기서'showTodoitseciRely : 1) ChoosetheHostCareLyTocon trolaccess.2) setResourcelimitswithOptionslikemax_queries_per_hour.3) Usestrong, iriquepasswords.4) enforcessl/tlsconnectionswith

MySQL : 문자열 데이터 유형을 피하는 방법 일반적인 실수?MySQL : 문자열 데이터 유형을 피하는 방법 일반적인 실수?May 13, 2025 am 12:09 AM

toavoidcommonmistakeswithstringdatatypesinmysql, stroundStringTypenuances, chooseTherightType, andManageEncodingAndCollationSettingSefectively.1) usecharforfixed-lengthstrings, varcharvariable-length, andtext/blobforlargerdata.2) setcarcatter

MySQL : 문자열 데이터 유형 및 열거?MySQL : 문자열 데이터 유형 및 열거?May 13, 2025 am 12:05 AM

mysqloffersechar, varchar, text, anddenumforstringdata.usecharforfixed-lengthstrings, varcharerforvariable 길이, 텍스트 forlarger 텍스트, andenumforenforcingdataantegritystofvalues.

MySQL Blob : Blobs 요청을 최적화하는 방법MySQL Blob : Blobs 요청을 최적화하는 방법May 13, 2025 am 12:03 AM

mysqlblob 요청 최적화는 다음 전략을 통해 수행 할 수 있습니다. 1. Blob 쿼리의 빈도를 줄이거나 독립적 인 요청을 사용하거나 지연로드를 사용하십시오. 2. 적절한 Blob 유형 (예 : TinyBlob)을 선택하십시오. 3. Blob 데이터를 별도의 테이블로 분리하십시오. 4. 응용 프로그램 계층에서 블로브 데이터를 압축합니다. 5. Blob Metadata를 색인하십시오. 이러한 방법은 실제 애플리케이션에서 모니터링, 캐싱 및 데이터 샤딩을 결합하여 성능을 효과적으로 향상시킬 수 있습니다.

MySQL에 사용자 추가 : 완전한 튜토리얼MySQL에 사용자 추가 : 완전한 튜토리얼May 12, 2025 am 12:14 AM

MySQL 사용자를 추가하는 방법을 마스터하는 것은 데이터베이스 관리자 및 개발자가 데이터베이스의 보안 및 액세스 제어를 보장하기 때문에 데이터베이스 관리자 및 개발자에게 중요합니다. 1) CreateUser 명령을 사용하여 새 사용자를 만듭니다. 2) 보조금 명령을 통해 권한 할당, 3) FlushPrivileges를 사용하여 권한이 적용되도록하십시오.

MySQL 문자열 데이터 유형 마스터 링 : Varchar vs. Text vs. CharMySQL 문자열 데이터 유형 마스터 링 : Varchar vs. Text vs. CharMay 12, 2025 am 12:12 AM

ChooseCharfixed-lengthdata, varcharforvariable-lengthdata, andtextforlargetextfields.1) charisefficientsconsentent-lengthdatalikecodes.2) varcharsuitsvariable-lengthdatalikeNames, 밸런싱 플렉스 및 성능

MySQL : 문자열 데이터 유형 및 인덱싱 : 모범 사례MySQL : 문자열 데이터 유형 및 인덱싱 : 모범 사례May 12, 2025 am 12:11 AM

MySQL에서 문자열 데이터 유형 및 인덱스를 처리하기위한 모범 사례는 다음과 같습니다. 1) 고정 길이의 Char, 가변 길이의 Varchar 및 큰 텍스트의 텍스트와 같은 적절한 문자열 유형 선택; 2) 인덱싱에 신중하고, 과도한 인덱싱을 피하고, 공통 쿼리에 대한 인덱스를 만듭니다. 3) 접두사 인덱스 및 전체 텍스트 인덱스를 사용하여 긴 문자열 검색을 최적화합니다. 4) 인덱스를 작고 효율적으로 유지하기 위해 인덱스를 정기적으로 모니터링하고 최적화합니다. 이러한 방법을 통해 읽기 및 쓰기 성능의 균형을 맞추고 데이터베이스 효율성을 향상시킬 수 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.