在编写查询之前,我们甚至应该对过滤条件进行排序,真正高效的条件(可能有多个,涉到同的表)是查询的主要驱动力,低效条件只起辅助作用。那么定义高效过滤条件的准则是什呢?首先,要看过滤条件能否尽快减少必须处理的数据量。所以,我们必须倍加关注条件
在编写查询之前,我们甚至应该对过滤条件进行排序,真正高效的条件(可能有多个,涉到同的表)是查询的主要驱动力,低效条件只起辅助作用。那么定义高效过滤条件的准则是什呢?首先,要看过滤条件能否尽快减少必须处理的数据量。所以,我们必须倍加关注条件的写方式。
假设有四个表: customers 、 orders 、 orderdetail 、 articles ,现在假设 SQL 要处理的问题是:找出最近六个月内居住在 Gotham 市、订购了蝙蝠车的所有客户。当然,编写这个查询有多种方法, ANSI SQL 的推崇者可能写出下列语句:
select distinct c.custname from customers c join orders o on o.custid = c.custid join orderdetail od on od.ordid = o.ordid join articles a on a.artid = od.artid where c.city = 'GOTHAM' and a.artname = 'BATMOBILE' and o.ordered >= somefunc
其中, somefunc 是个函数,返回距今六个月前的具体日期。注意上面用了 distinct ,因为考虑到某个客户可以是大买家,最近订购了好几台蝙蝠车。
暂不考虑优化器将如何改写此查询,我们先看一下这段代码的含义。首先,来自 customers 表的数据应只保留城市名为 Gotham 的记录。接着,搜索 orders 表,这意味着 custid 字段最好有索引,否则只有通过排序、合并或扫描 orders 表建立一个哈希表才能保证查询速度。对 orders 表 ,还要针对订单日期进行过滤:如果优化器比较聪明,它会在连接( join )前先过滤掉一些数据,从而减少后面要处理的数据量;不太聪明的优化器则可能会先做连接,再作过滤,这时在连接中指定过滤条件利于提高性能,例如:
join orders o on o.custid = c.custid and a.ordered >= somefunc
注意,如果是:
left outer join orders o on o.custid = c.custid and a.ordered >= somefunc
此处关于left表的筛选条件将失效,因为是左外连接,左表的所有列都将出现在这次连接结果集中)。
即使过滤条件与连接( join )无关,优化器也会受到过滤条件的影响。例如,若 orderdetail 的主键为( ordid, artid ),即 ordid 为索引的第一个属性,那么我们可以利用索引找到与订单相关的记录。但如果主键是( artid, ordid )就太不幸了(注意,就关系理论而言 ,无论哪个版本都是完全一样),此时的访问效率比( ordid, artid )作为索引时要差,甚至一些数据库产品无法使用该索引(注 3 ),唯一的希望就是在ordid 上加独立索引了。
连接了表 orderdetail 和 orders 之后,来看 articles 表,这不会有问题,因为表 order 包括 artid 字段。最后,检查 articles 中的值是否为 Batmobile 。查询就这样结束了,因为用了 distinct ,通过层层筛选的客户名还必须要排序,以剔除重复项目。
避免在最高层使用 distinct 应该是一条基本规则 。原因在于,即使我们遗漏了连接的某个条件, distinct 也会使查询 " 看似正确 " 地执行 —— 无可否认,发现重复数据容易,发现数据不准确很难,所以避免在最高层使用 distinct 应该是一条基本规则。
发现结果不正确更难,例如,如果恰巧有多位客户都叫 " Wayne " , distinct 不但会剔除由同个客户的多张订单产生的重复项目,也会剔除由名字相同的不同客户产生的重复项目。事实上,应该同时返回具唯一性的客户 ID 和客户名,以保证得到蝙蝠车买家的完整清单。
要摆脱 distinct ,可考虑以下思路:客户在 Gohtam 市,而且满足存在性测试,即在最近六个月订购过蝙蝠车。注意,多数(但非全部) SQL 方言支持以下语法:
select c.custname from customers c where c.city = 'GOTHAM' and exists (select null from orders o, orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid and o.custid = c.custid and o.ordered >= somefunc )
上例的存在性测试,同一个名字可能出现多次,但每个客户只出现一次,不管他有多少订单。有人认为我对 ANSI SQL 语法的挑剔有点苛刻(指 " 蝙蝠车买主 " 的例子),因为上面代码中customers 表的地位并没有降低。其实,关键区别在于,新查询中 customers 表是查询结果的唯一来源(嵌套的子查询会负责找出客户子集),而先前的查询却用了 join 。
这个嵌套的子查询与外层的 select 关系十分密切。如代码第 11 行所示(粗体部分),子查询参照了外层查询的当前记录,因此,内层子查询就是所谓的关联子查询( correlated subquery )。
此类子查询有个弱点,它无法在确定当前客户之前执行。如果优化器不改写此查询,就必须先找出每个客户,然后逐一检查是否满足存在性测试,当来自 Gotham 市的客户非常少时执行效率倒是很高,否则情况会很糟(此时,优秀的优化器应尝试其他执行查询的方式)。
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o, orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid and o.ordered >= somefunc)
在这个例子中,内层查询不再依赖外层查询,它已变成了非关联子查询( uncorrelated subquery ),只须执行一次。很显然,这段代码采用了原有的执行流程。在本节的前一个例子 中 ,必须先搜寻符合地点条件的客户(如均来自 GOTHAM ),接着依次检查各个订单。而现在,订购了蝙蝠车的客户,可以通过内层查询获得。
不过,如果更仔细地分析一下,前后两个版本的代码还有些更微妙的差异。含关联子查询的代码中,至关重要的是 orders 表中的 custid 字段要有索引,而这对另一段代码并不重要,因为这时要用到的索引(如果有的话)是表 customers 的主键索引。
你或许注意到,新版的查询中执行了隐式的 distinct 。的确,由于连接操作,子查询可能会返回有关一个客户的多条记录。但重复项目不会有影响,因为 in 条件只检查该项目是否出现在子查询返回的列表中,且 in 不在乎某值在列表中出现了一次还是一百次。但为了一致性,作为整体,应该对子查询和主查询应用相同的规则,也就是在子查询中也加入存在性测试:
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o where o.ordered >= somefunc and exists (select null from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid))
或者
select custname from customers where city = 'GOTHAM' and custid in (select custid from orders where ordered >= somefunc and ordid in (select od.ordid from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid)
尽管嵌套变得更深、也更难懂了,但子查询内应选择 exists 还是 in 的选择规则相同:此选择取决于日期与商品条件的有效性。除非过去六个月的生意非常清淡,否则商品名称应为最有效的过滤条件,因此子查询中用 in 比 exists 好,这是因为,先找出所有蝙蝠车的订单、再检查销售是否发生在最近六个月,比反过来操作要快。如果表 orderdetail 的 artid 字段有索引,这个方法会更快,否则,这个聪明巧妙的举措就会黯然失色。
每当对大量记录做存在性检查时,选择 in 还是 exists 须斟酌。
利于多数 SQL 方言,非关联子查询可以被改写成 from 子句中的内嵌视图。然而,一定要记住的是, in 会隐式地剔除重复项目,当子查询改写为 from 子句中的内嵌视图时,必须要显式地消除重复项目。例如:
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o, (select distinct od.ordid from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid) x where o.ordered >= somefunc and x.ordid = o.ordid)
总结:保证 SQL 语句返回正确结果,只是建立最佳 SQL 语句的第一步。

MySQL 사용자를 추가하는 방법을 마스터하는 것은 데이터베이스 관리자 및 개발자가 데이터베이스의 보안 및 액세스 제어를 보장하기 때문에 데이터베이스 관리자 및 개발자에게 중요합니다. 1) CreateUser 명령을 사용하여 새 사용자를 만듭니다. 2) 보조금 명령을 통해 권한 할당, 3) FlushPrivileges를 사용하여 권한이 적용되도록하십시오.

ChooseCharfixed-lengthdata, varcharforvariable-lengthdata, andtextforlargetextfields.1) charisefficientsconsentent-lengthdatalikecodes.2) varcharsuitsvariable-lengthdatalikeNames, 밸런싱 플렉스 및 성능

MySQL에서 문자열 데이터 유형 및 인덱스를 처리하기위한 모범 사례는 다음과 같습니다. 1) 고정 길이의 Char, 가변 길이의 Varchar 및 큰 텍스트의 텍스트와 같은 적절한 문자열 유형 선택; 2) 인덱싱에 신중하고, 과도한 인덱싱을 피하고, 공통 쿼리에 대한 인덱스를 만듭니다. 3) 접두사 인덱스 및 전체 텍스트 인덱스를 사용하여 긴 문자열 검색을 최적화합니다. 4) 인덱스를 작고 효율적으로 유지하기 위해 인덱스를 정기적으로 모니터링하고 최적화합니다. 이러한 방법을 통해 읽기 및 쓰기 성능의 균형을 맞추고 데이터베이스 효율성을 향상시킬 수 있습니다.

Toaddauserremotelytomysql, 다음에 따르면 : 1) 1) ConnectTomysqlasRoot, 2) CreateEnewerwitHremoteAccess, 3) GrantNecessaryPrivileges 및 4) FlushPrivileges

tostorestringsefficiallyInmysql, choOseTherightDatAtypeBasedOnyOURNEDS : 1) USECHARFIXED-lengthstringsLikeCountryCodes.2) UseVarCharForVariable-lengthstringsLikenames.3) USETEXTFORLONG-FORMTEXTCONTENT.4) USETEXTFORLONG-FORMTEXTCONTENT.4) USETLOBFORBINARYIMAGES

MySQL의 블로브 및 텍스트 데이터 유형을 선택할 때 Blob은 이진 데이터를 저장하는 데 적합하며 텍스트는 텍스트 데이터를 저장하는 데 적합합니다. 1) Blob은 그림 및 오디오와 같은 이진 데이터에 적합합니다. 2) 텍스트는 기사 및 주석과 같은 텍스트 데이터에 적합합니다. 선택할 때는 데이터 속성 및 성능 최적화를 고려해야합니다.

아니요, youshouthusTherootUserInmysqlforyOUrProduct.instead, createScificuserswithlimitedPrivilegestoEnhancesecurity 및 forcuments : 1) grantOnlySerypermissionStothisUser, 3) 정기적으로 재구성 한 사람들이 관리자입니다

mysqlstringdatatatypess는 Bechosenbeasedondatacharacteristicsandusecases : 1) Usecharfixed-lengthstringslikecountryCodes.2) UseVarCharforVariable-lengthstringslikenames.3) UseBaryBarBarBaryBinaryDatalikeCryPyps.4) Usebortextforlargeuns


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기