这个话题讨论在ITPUB,链接:http://www.itpub.net/thread-1838538-1-1.html 1. 什么是IMU?IMU的主要作用是什么,也就是说为了解决什么问题? IMU---In Memory Undo,10g新特性,数据库会在shared pool开辟独立的内存区域用于存储Undo信息, 每个新事务都会
这个话题讨论在ITPUB,链接:http://www.itpub.net/thread-1838538-1-1.html
1. 什么是IMU?IMU的主要作用是什么,也就是说为了解决什么问题?
IMU--->In Memory Undo,10g新特性,数据库会在shared pool开辟独立的内存区域用于存储Undo信息,
每个新事务都会分配一个IMU buffer(私有的),一个buffer里有很多node,一个node相当于一个block(回滚块)。
IMU特性:
IMU顾名思义就是在内存中的undo,现在每次更改data block,Oracle 不用去更改这个undo block(也不会生成相应的redo了),而是把undo信息缓存到IMU里去了,只有最后commit或者flush IMU时,这些undo 信息才会批量更新到undo block,并生成redo。可以避免Undo信息以前在Buffer Cache中的读写操作,从而可以进一步的减少Redo生成,同时可以大大减少以前的UNDO SEGMENT的操作。IMU中数据通过暂存、整理与收缩之后也可以写出到回滚段,这样的写出提供了有序、批量写的性能提升。
IMU主要作用:
减少CR块-->在构造CR block时,不用像以前那样从undo block中获取undo record了,而是用共享池私有IMU区域里的信息来构造cr block,减少了BUFFER CACEH中 CBC LATCH竞争。
减少REDO日志条目数-->不再是每条DML语句一个redo records,而是每个事务一个redo records--REDO RECORD的产生会传到 LOG BUFFER,,会申请LATCH。
减少LATCH-->首先因为减少REDO RECORD数目;其次用一个IMU latch 代替 redo allocation latch 和 redo copy latch这两个,也减少了LATCH争用.
查询系统中IMU LATCH的数量--也就是Private redo strand area的个数。
IMU 私有REDO区对应的内部表:x$kcrfstrand IMU UNDO区对应的内部表:x$ktifp
BYS@ bys3>select count(name) from v$latch_children where lower(name) like 'in mem%';
COUNT(NAME)
-----------
84
BYS@ bys3>select count(*),name from v$latch_children where lower(name) like 'in mem%' group by name;
COUNT(*) NAME
---------- ----------------------------------------------------------------
84 In memory undo latch
下面语句可以查询IMU LATCH的获取情况
select name,gets from v$latch_children where lower(name) like 'in mem%';
2.在哪些场景下不会使用IMU特性?(ORACLE 10g出现了IMU,默认开启IMU)
在RAC环境中不支持IMU。
开启FLASHBACK DATABASE时会开启打开辅助日志,此时不能用IMU。
事务过大--据说每个IMU Buffer的Private redo strand area大小大概是64KB(64位的Oracle版本是128KB),大事务不能用。比如一个事务,先有一条UPDATE,此时将REDO私有区域使用完了,此事务的其它DML语句,将自动使用非IMU模式。
共享池太小时,ORACLE会自动不使用IMU。
无法获取IMU LATCH时,将自动使用非IMU模式。
3.如何手动关闭和开启IMU模式?
10G和11G中默认是开启IMU特性的,开启关闭语句如下:--修改后最好重启使之生效,或者至少切换一次REDO日志。
alter system set "_in_memory_undo"=false;
alter system set "_in_memory_undo"=true; --关闭IMU后使用此语句改回使用IMU特性。
4、谈谈一条UPDATE语句从第一步到第九步的整个过程?在IMU模式下对REDO日志做DUMP分析(上图所示:IMU模式的REDO格式)。
UPDATE语句从第一步到第九步的对应上图是:
第一步:将更改的数据存放到PGA第二步:将BUFFER CACHE中旧数据拷贝到共享池的私有IMU buffer
第三步:将PGA中修改后的数据存放到private redo private redo--在IMU中才有。
第四步:修改buffre cache中的数据
做提交操作后:
第五步:从IMU中拷贝修改前值到BUFFER CACHE中构建一个CR块-----即使未提交时SMON每3秒也会做此工作
第六步:第四步修改修改buffre cache中的数据产生的redo日志写入log buffe
第七步:第五步操作构造CR块,产生的redo日志写入 log buffe
第八步:由lgwr写出log buffer到redo log file
第九步:dbwr 将脏数据写入data file
5.UPDATE操作DUMP REDO 内容实验记录:
INSERT 和DELETE语句的,详见:点击打开链接REDO RECORD - Thread:1 RBA: 0x000141.00000027.0010 LEN: 0x031c VLD: 0x0d
SCN: 0x0000.00719188 SUBSCN: 1 01/07/2014 20:27:05
(LWN RBA: 0x000141.00000027.0010 LEN: 0002 NST: 0001 SCN: 0x0000.00719187)
####一个REDO RECORD: RECORD头+CHANGE VECTOR组成(一个CV就是一个操作)
以上是日志头,Thread:1 线程号,RAC时会有1,2等
RBA: 0x000141.00000027.0010 将16进制转换为十进制分别是日志文件号、日志块号、在块上第N字节
VLD: 0x0d日志类型--IMU模式时是这个;非IMU时是:VLD: 0x05
SCN: 0x0000.00719188 SUBSCN: 1 01/07/2014 20:27:05 ----
BYS@ bys3>select scn_to_timestamp(to_number('719188','xxxxxxxx')) from dual;
SCN_TO_TIMESTAMP(TO_NUMBER('719188','XXXXXXXX'))
---------------------------------------------------------------------------
07-JAN-14 08.27.05.000000000 PM
--是此REDO条目产生时的SCN号,转为十进制现转为时间戳为:08.27.05, 插入语句完成是在20:27:00 BYS@ bys3>commit;-- --这个是在插入语句完成5秒后,此SCN与CHANGE#4提交时SCN一致。
(LWN RBA: 0x000141.00000027.0010 LEN: 0002 NST: 0001 SCN: 0x0000.00719187)
括号中SCN: 0x0000.00719187 比上一行:SCN: 0x0000.00719187 少了1个SCN。
####
CHANGE #1 TYP:2 CLS:1 AFN:4 DBA:0x010000fd OBJ:22327 SCN:0x0000.007164a1 SEQ:1 OP:11.5 ENC:0 RBL:0
#####AFN:4,操作是在4号文件做的-dba_data_files.file_id;OBJ:22327--操作的对象的OBJECT_ID。OP:11.5-有的版本是OP:11.19--更新操作
KTB Redo
op: 0x11 ver: 0x01
compat bit: 4 (post-11) padding: 1
op: F xid: 0x0005.002.00000edc uba: 0x00c041cd.02ea.01
Block cleanout record, scn: 0x0000.0071917c ver: 0x01 opt: 0x02, entries follow...
itli: 1 flg: 2 scn: 0x0000.007164a1
KDO Op code: URP row dependencies Disabled -- --URP=UPDATE ROW PIECE。有时会是:KDO Op code:21 row dependencies Disabled
xtype: XA flags: 0x00000000 bdba: 0x010000fd hdba: 0x010000fa
itli: 2 ispac: 0 maxfr: 4858
tabn: 0 slot: 8(0x8) flag: 0x2c lock: 2 ckix: 0
ncol: 3 nnew: 1 size: 2 --ncol: 3 nnew: 1 表示操作的表有3个列,操作了一列,size: 2
--列字符长度增加2:database减去chedan---根据多次update并DUMP的日志来看,这里的size的值应该是:当前CHANGE中的值减去另一个。。
col 1: [ 8] 64 61 74 61 62 61 73 65 --set dname='database' --col 1: [ 8],第二列,8个字符
BYS@ bys3>select dump('database',16),dump('dataoracle',16) from dual;
DUMP('DATABASE',16) DUMP('DATAORACLE',16)
------------------------------------- --------------------------------------------
Typ=96 Len=8: 64,61,74,61,62,61,73,65 Typ=96 Len=10: 64,61,74,61,6f,72,61,63,6c,65
#########################
CHANGE #2 TYP:0 CLS:25 AFN:3 DBA:0x00c000c0 OBJ:4294967295 SCN:0x0000.00719153 SEQ:1 OP:5.2 ENC:0 RBL:0
ktudh redo: slt: 0x0002 sqn: 0x00000edc flg: 0x000a siz: 164 fbi: 0
uba: 0x00c041cd.02ea.01 pxid: 0x0000.000.00000000
### #####################事务信息
TYP:0 普通块 ,CLS:25 class大于16是UNDO块-递增。AFN:3 绝对文件号dba_data_files.file_id--是UNDO的文件号
DBA:0x00c000c0 数据块在内存中地址
OBJ:4294967295 --十进制,转为16进制是FFFFFFFF
SCN:0x0000.00719153 转换为16进制可与操作时对比
OP:5.2 -> operation code 向UNDO段头的事务表写事务信息-事务开始
uba: 0x00c041cd.02ea.01 UNDO块地址
#######################
CHANGE #3 TYP:0 CLS:1 AFN:4 DBA:0x010000fdOBJ:22327 SCN:0x0000.00719188 SEQ:1OP:11.5 ENC:0 RBL:0
KTB Redo --同CHANGE #1的解析
op: 0x02 ver: 0x01
compat bit: 4 (post-11) padding: 1
op: C uba: 0x00c041cd.02ea.02
KDO Op code: URP row dependencies Disabled ---UNDO ROW PIECE
xtype: XA flags: 0x00000000 bdba: 0x010000fd hdba: 0x010000fa
itli: 2 ispac: 0 maxfr: 4858
tabn: 0 slot: 9(0x9) flag: 0x2c lock: 2 ckix: 0
ncol: 3 nnew: 1 size: 6
col 1: [10] 64 61 74 61 6f 72 61 63 6c 65 --第2列,10个字符--此次操作的字符数
BYS@ bys3>select dump('database',16),dump('dataoracle',16) from dual;
DUMP('DATABASE',16) DUMP('DATAORACLE',16)
------------------------------------- --------------------------------------------
Typ=96 Len=8: 64,61,74,61,62,61,73,65 Typ=96 Len=10: 64,61,74,61,6f,72,61,63,6c,65
###########################
CHANGE #4 TYP:0 CLS:25 AFN:3DBA:0x00c000c0 OBJ:4294967295SCN:0x0000.00719188 SEQ:1 OP:5.4 ENC:0 RBL:0
ktucm redo: slt: 0x0002 sqn: 0x00000edc srt: 0 sta: 9 flg: 0x2 ktucf redo: uba: 0x00c041cd.02ea.02 ext: 15 spc: 7890 fbi: 0
######OP:5.4 表明是提交操作。AFN:3 对应的是UNDO文件,slt: 0x0002 修改了UNDO文件的这个事务槽,uba: 0x00c041cd.02ea.02
CHANGE #5 TYP:1 CLS:26 AFN:3 DBA:0x00c041cd OBJ:4294967295 SCN:0x0000.0071917c SEQ:1 OP:5.1 ENC:0 RBL:0
ktudb redo: siz: 164 spc: 0 flg: 0x000a seq: 0x02ea rec: 0x01
###OP:5.1 --把数据修改前值放到UNDO --AFN:3 --在UNDO文件里操作,UNDO文件号是3。。CLS:26 --比CHANGE #2中大1,顺序增长哈哈
xid: 0x0005.002.00000edc
ktubl redo: slt: 2 rci: 0 opc: 11.1 [objn: 22327 objd: 22327 tsn: 4]
Undo type: Regular undo Begin trans Last buffer split: No
Temp Object: No
Tablespace Undo: No
0x00000000 prev ctl uba: 0x00c041cc.02ea.04
prev ctl max cmt scn: 0x0000.00718dff prev tx cmt scn: 0x0000.00718e4e
txn start scn: 0x0000.00000000 logon user: 32 prev brb: 12599753 prev bcl: 0 BuExt idx: 0 flg2: 0
KDO undo record:
KTB Redo
op: 0x04 ver: 0x01
compat bit: 4 (post-11) padding: 1
op: L itl: xid: 0x0009.004.00000ebc uba: 0x00c037d5.0249.08
flg: C--- lkc: 0 scn: 0x0000.0070cfea
KDO Op code: URP row dependencies Disabled -----UNDO ROW PIECE
xtype: XA flags: 0x00000000 bdba: 0x010000fd hdba: 0x010000fa
itli: 2 ispac: 0 maxfr: 4858
tabn: 0 slot: 8(0x8) flag: 0x2c lock: 0 ckix: 0
ncol: 3 nnew: 1 size: -2 ----列字符长度减少2:chedan 减去database---根据多次update并DUMP的日志来看,这里的size的值应该是:当前CHANGE中的值减去另一个
col 1: [ 6] 63 68 65 64 61 6e ---- 原值是chedan,,第二列,6个字符
BYS@ bys3>select dump('chedan',16),dump('test',16) from dual;
DUMP('CHEDAN',16) DUMP('TEST',16)
------------------------------- -------------------------
Typ=96 Len=6: 63,68,65,64,61,6e Typ=96 Len=4: 74,65,73,74
CHANGE #6 TYP:0 CLS:26 AFN:3 DBA:0x00c041cd OBJ:4294967295 SCN:0x0000.00719188 SEQ:1 OP:5.1ENC:0 RBL:0 --解析同上
ktudb redo: siz: 92 spc: 7984 flg: 0x0022 seq: 0x02ea rec: 0x02
xid: 0x0005.002.00000edc
ktubu redo: slt: 2 rci: 1 opc: 11.1 objn: 22327 objd: 22327 tsn: 4
Undo type: Regular undo Undo type: Last buffer split: No
Tablespace Undo: No
0x00000000
KDO undo record:
KTB Redo
op: 0x02 ver: 0x01
compat bit: 4 (post-11) padding: 1
op: C uba: 0x00c041cd.02ea.01
KDO Op code: URP row dependencies Disabled -----UNDO ROW PIECE
xtype: XA flags: 0x00000000 bdba: 0x010000fd hdba: 0x010000fa
itli: 2 ispac: 0 maxfr: 4858
tabn: 0 slot: 9(0x9) flag: 0x2c lock: 0 ckix: 0
ncol: 3 nnew: 1 size: -6 -列字符长度减少2:test减去database---根据多次update并DUMP的日志来看,这里的size的值应该是:当前CHANGE中的值减去另一个
col 1: [ 4] 74 65 73 74 --此次操作,第二列,4个字符
BYS@ bys3>select dump('chedan',16),dump('test',16) from dual;
DUMP('CHEDAN',16) DUMP('TEST',16)
------------------------------- -------------------------
Typ=96 Len=6: 63,68,65,64,61,6e Typ=96 Len=4: 74,65,73,74
################################################验证SMON进程
实验步骤: --这个实验思路有错误的。不应该是DMUP REDO日志,因为当时还没从log buffe写入redo log file,可以考虑使用--我还未做。
Event 10500 - Trace SMON Process | 跟踪SMON进程 | event = "10500 trace name context forever, level 1" D |
12:12:04 BYS@ bys3>select a.group#,a.sequence#,a.archived,a.status,b.type,b.member from v$log a,v$logfile b where a.group#=b.group#;
---------- ---------- --- ---------------- ------- ------------------------------
1 334 NO CURRENT ONLINE /u01/oradata/bys3/redo01.log
2 332 YES ACTIVE ONLINE /u01/oradata/bys3/redo02.log
3 333 YES ACTIVE ONLINE /u01/oradata/bys3/redo03.log
Elapsed: 00:00:00.03
12:12:09 BYS@ bys3>select * from dept;
DEPTNO DNAME LOC
---------- -------------- -------------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
40 OPERATIONS BOSTON
11 database database
22 dataoracle sh
Elapsed: 00:00:00.01
12:12:24 BYS@ bys3>update dept set dname='mysql' where deptno=11;
1 row updated.
Elapsed: 00:00:00.01
12:12:29 BYS@ bys3> ---UPDATE语句完成的时间是:12:12:29,只做UPDATE语句,不要提交,立刻去DUMP REDO LOGFILE.
另一会话在上一步做操作时来DUMP : event = "10500 trace name context forever, level 1"

MySQL과 Sqlite의 주요 차이점은 설계 개념 및 사용 시나리오입니다. 1. MySQL은 대규모 응용 프로그램 및 엔터프라이즈 수준의 솔루션에 적합하며 고성능 및 동시성을 지원합니다. 2. SQLITE는 모바일 애플리케이션 및 데스크탑 소프트웨어에 적합하며 가볍고 내부질이 쉽습니다.

MySQL의 인덱스는 데이터 검색 속도를 높이는 데 사용되는 데이터베이스 테이블에서 하나 이상의 열의 주문 구조입니다. 1) 인덱스는 스캔 한 데이터의 양을 줄임으로써 쿼리 속도를 향상시킵니다. 2) B-Tree Index는 균형 잡힌 트리 구조를 사용하여 범위 쿼리 및 정렬에 적합합니다. 3) CreateIndex 문을 사용하여 CreateIndexIdx_customer_idonorders (customer_id)와 같은 인덱스를 작성하십시오. 4) Composite Indexes는 CreateIndexIdx_customer_orderOders (Customer_id, Order_Date)와 같은 다중 열 쿼리를 최적화 할 수 있습니다. 5) 설명을 사용하여 쿼리 계획을 분석하고 피하십시오

MySQL에서 트랜잭션을 사용하면 데이터 일관성이 보장됩니다. 1) STARTTRANSACTION을 통해 트랜잭션을 시작한 다음 SQL 작업을 실행하고 커밋 또는 롤백으로 제출하십시오. 2) SavePoint를 사용하여 부분 롤백을 허용하는 저장 지점을 설정하십시오. 3) 성능 최적화 제안에는 트랜잭션 시간 단축, 대규모 쿼리 방지 및 격리 수준을 합리적으로 사용하는 것이 포함됩니다.

MySQL 대신 PostgreSQL을 선택한 시나리오에는 다음이 포함됩니다. 1) 복잡한 쿼리 및 고급 SQL 기능, 2) 엄격한 데이터 무결성 및 산 준수, 3) 고급 공간 기능이 필요하며 4) 큰 데이터 세트를 처리 할 때 고성능이 필요합니다. PostgreSQL은 이러한 측면에서 잘 수행되며 복잡한 데이터 처리 및 높은 데이터 무결성이 필요한 프로젝트에 적합합니다.

MySQL 데이터베이스의 보안은 다음 조치를 통해 달성 할 수 있습니다. 1. 사용자 권한 관리 : CreateUser 및 Grant 명령을 통한 액세스 권한을 엄격히 제어합니다. 2. 암호화 된 전송 : 데이터 전송 보안을 보장하기 위해 SSL/TLS를 구성합니다. 3. 데이터베이스 백업 및 복구 : MySQLDump 또는 MySQLPump를 사용하여 정기적으로 백업 데이터를 사용하십시오. 4. 고급 보안 정책 : 방화벽을 사용하여 액세스를 제한하고 감사 로깅 작업을 가능하게합니다. 5. 성능 최적화 및 모범 사례 : 인덱싱 및 쿼리 최적화 및 정기 유지 보수를 통한 안전 및 성능을 모두 고려하십시오.

MySQL 성능을 효과적으로 모니터링하는 방법은 무엇입니까? Mysqladmin, Showglobalstatus, Perconamonitoring and Management (PMM) 및 MySQL Enterprisemonitor와 같은 도구를 사용하십시오. 1. MySQLADMIN을 사용하여 연결 수를보십시오. 2. showglobalstatus를 사용하여 쿼리 번호를보십시오. 3.pmm은 자세한 성능 데이터 및 그래픽 인터페이스를 제공합니다. 4. MySQLENTERPRISOMITOR는 풍부한 모니터링 기능 및 경보 메커니즘을 제공합니다.

MySQL과 SqlServer의 차이점은 1) MySQL은 오픈 소스이며 웹 및 임베디드 시스템에 적합합니다. 2) SQLServer는 Microsoft의 상용 제품이며 엔터프라이즈 수준 애플리케이션에 적합합니다. 스토리지 엔진의 두 가지, 성능 최적화 및 응용 시나리오에는 상당한 차이가 있습니다. 선택할 때는 프로젝트 규모와 향후 확장 성을 고려해야합니다.

고 가용성, 고급 보안 및 우수한 통합이 필요한 엔터프라이즈 수준의 응용 프로그램 시나리오에서는 MySQL 대신 SQLServer를 선택해야합니다. 1) SQLServer는 고 가용성 및 고급 보안과 같은 엔터프라이즈 수준의 기능을 제공합니다. 2) VisualStudio 및 Powerbi와 같은 Microsoft Ecosystems와 밀접하게 통합되어 있습니다. 3) SQLSERVER는 성능 최적화에서 우수한 성능을 발휘하며 메모리 최적화 된 테이블 및 열 스토리지 인덱스를 지원합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Dreamweaver Mac版
시각적 웹 개발 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.
