【原文:http://blog.csdn.net/poem_qianmo/article/details/19925819】 文章链接: http://blog.csdn.net/poem_qianmo/article/details/19925819 作者:毛星云(浅墨)邮箱: happylifemxy@163.com 写作当前博文时配套使用OpenCV版本:2.4.8 之前啃了不少Op
【原文:http://blog.csdn.net/poem_qianmo/article/details/19925819】
文章链接: http://blog.csdn.net/poem_qianmo/article/details/19925819
作者:毛星云(浅墨) 邮箱: happylifemxy@163.com
写作当前博文时配套使用OpenCV版本:2.4.8
之前啃了不少OpenCV的官方文档,发现如果了解了一些OpenCV整体的模块架构后,再重点学习自己感兴趣的部分的话,就会有一览众山小的感觉,于是,就决定写出这篇文章,作为启程OpenCV系列博文的第二篇。
至于OpenCV组件结构的研究方法,我们不妨管中窥豹,通过opencv安装路径下include目录里面头文件的分类存放,来一窥OpenCV这些年迅猛发展起来的庞杂组件架构。
我们进入到D:\ProgramFiles\opencv\build\include目录,可以看到有opencv和opencv2这两个文件夹。显然,opencv这个文件夹里面包含着旧版的头文件。而opencv2这个文件夹里面包含着具有时代意义的新版OpenCV2系列的头文件。
在opencv这个文件夹里面,也就是D:\Program Files\opencv\build\include\opencv目录下,可以看到如下的各种头文件。这里面大概就是opencv 1.0最核心的,而且保留下来的内容的头文件,可以把它们整体理解为一个组件。
再来看看我们重点关注的opencv2这边,在D:\ProgramFiles\opencv\build\include\opencv2目录下,我们可以看到这些文件夹:
我们灵机一动,发现下面有个叫opencv_modules.hpp的hpp文件,一看就知道里面存放的是opencv2中的新模块构造相关的说明代码,打开一看,果不其然,定义的是OpenCV2所有组件的宏:
[cpp] view plaincopyprint?
![]()
- /*
- * ** File generated automatically, do not modify **
- *
- *This file defines the list of modules available in current build configuration
- *
- *
- */
- #define HAVE_OPENCV_CALIB3D
- #define HAVE_OPENCV_CONTRIB
- #define HAVE_OPENCV_CORE
- #define HAVE_OPENCV_FEATURES2D
- #define HAVE_OPENCV_FLANN
- #define HAVE_OPENCV_GPU
- #define HAVE_OPENCV_HIGHGUI
- #define HAVE_OPENCV_IMGPROC
- #define HAVE_OPENCV_LEGACY
- #define HAVE_OPENCV_ML
- #define HAVE_OPENCV_NONFREE
- #define HAVE_OPENCV_OBJDETECT
- #define HAVE_OPENCV_OCL
- #define HAVE_OPENCV_PHOTO
- #define HAVE_OPENCV_STITCHING
- #define HAVE_OPENCV_SUPERRES
- #define HAVE_OPENCV_TS
- #define HAVE_OPENCV_VIDEO
- #define HAVE_OPENCV_VIDEOSTAB
OK,就不多客套了,下面就是OpenCV的所有模块介绍,按照顺序来:
【calib3d】——其实就是就是Calibration(校准)加3D这两个词的组合缩写。这个模块主要是相机校准和三维重建相关的内容。基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建等等。
【contrib】——也就是Contributed/Experimental Stuf的缩写, 该模块包含了一些最近添加的不太稳定的可选功能,不用去多管。2.4.8里的这个模块有新型人脸识别,立体匹配,人工视网膜模型等技术。
【core】——核心功能模块,包含如下内容:
- OpenCV基本数据结构
- 动态数据结构
- 绘图函数
- 数组操作相关函数
- 辅助功能与系统函数和宏
- 与OpenGL的互操作
【imgproc】——Image和Processing这两个单词的缩写组合。图像处理模块,这个模块包含了如下内容:
- 线性和非线性的图像滤波
- 图像的几何变换
- 其它(Miscellaneous)图像转换
- 直方图相关
- 结构分析和形状描述
- 运动分析和对象跟踪
- 特征检测
- 目标检测等内容
【features2d】 ——也就是Features2D, 2D功能框架 ,包含如下内容:
- 特征检测和描述
- 特征检测器(Feature Detectors)通用接口
- 描述符提取器(Descriptor Extractors)通用接口
- 描述符匹配器(Descriptor Matchers)通用接口
- 通用描述符(Generic Descriptor)匹配器通用接口
- 关键点绘制函数和匹配功能绘制函数
【flann】—— Fast Library for Approximate Nearest Neighbors,高维的近似近邻快速搜索算法库,包含两个部分:
- 快速近似最近邻搜索
- 聚类
【gpu】——运用GPU加速的计算机视觉模块
【highgui】——也就是high gui,高层GUI图形用户界面,包含媒体的I / O输入输出,视频捕捉、图像和视频的编码解码、图形交互界面的接口等内容
【legacy】——一些已经废弃的代码库,保留下来作为向下兼容,包含如下相关的内容:
- 运动分析
- 期望最大化
- 直方图
- 平面细分(C API)
- 特征检测和描述(Feature Detection and Description)
- 描述符提取器(Descriptor Extractors)的通用接口
- 通用描述符(Generic Descriptor Matchers)的常用接口
- 匹配器
【ml】——Machine Learning,机器学习模块, 基本上是统计模型和分类算法,包含如下内容:
- 统计模型 (Statistical Models)
- 一般贝叶斯分类器 (Normal Bayes Classifier)
- K-近邻 (K-NearestNeighbors)
- 支持向量机 (Support Vector Machines)
- 决策树 (Decision Trees)
- 提升(Boosting)
- 梯度提高树(Gradient Boosted Trees)
- 随机树 (Random Trees)
- 超随机树 (Extremely randomized trees)
- 期望最大化 (Expectation Maximization)
- 神经网络 (Neural Networks)
- MLData
【nonfree】,也就是一些具有专利的算法模块 ,包含特征检测和GPU相关的内容。最好不要商用,可能会被告哦。
【objdetect】——目标检测模块,包含Cascade Classification(级联分类)和Latent SVM这两个部分。
【ocl】——即OpenCL-accelerated Computer Vision,运用OpenCL加速的计算机视觉组件模块
【photo】——也就是Computational Photography,包含图像修复和图像去噪两部分
【stitching】——images stitching,图像拼接模块,包含如下部分:
- 拼接流水线
- 特点寻找和匹配图像
- 估计旋转
- 自动校准
- 图片歪斜
- 接缝估测
- 曝光补偿
- 图片混合
【superres】——SuperResolution,超分辨率技术的相关功能模块
【ts】——opencv测试相关代码,不用去管他
【video】——视频分析组件,该模块包括运动估计,背景分离,对象跟踪等视频处理相关内容。
【Videostab】——Video stabilization,视频稳定相关的组件,官方文档中没有多作介绍,不管它了。
看到到这里,相信大家已经对OpenCV的模块架构设计有了一定的认识。
OpenCV其实就是这么多模块作为代码容器组合起来的一个SDK而已,没什么稀奇的,对吧。
最后配张图,养养眼:
好了,OpenCV的组件结构介绍大概就是这些。
下篇文章见 :)

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL은 소규모 및 대기업에 적합합니다. 1) 소기업은 고객 정보 저장과 같은 기본 데이터 관리에 MySQL을 사용할 수 있습니다. 2) 대기업은 MySQL을 사용하여 대규모 데이터 및 복잡한 비즈니스 로직을 처리하여 쿼리 성능 및 트랜잭션 처리를 최적화 할 수 있습니다.

InnoDB는 팬텀 읽기를 차세대 점화 메커니즘을 통해 효과적으로 방지합니다. 1) Next-Keylocking은 Row Lock과 Gap Lock을 결합하여 레코드와 간격을 잠그기 위해 새로운 레코드가 삽입되지 않도록합니다. 2) 실제 응용 분야에서 쿼리를 최적화하고 격리 수준을 조정함으로써 잠금 경쟁을 줄이고 동시성 성능을 향상시킬 수 있습니다.

MySQL은 프로그래밍 언어가 아니지만 쿼리 언어 SQL은 프로그래밍 언어의 특성을 가지고 있습니다. 1. SQL은 조건부 판단, 루프 및 가변 작업을 지원합니다. 2. 저장된 절차, 트리거 및 기능을 통해 사용자는 데이터베이스에서 복잡한 논리 작업을 수행 할 수 있습니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Dreamweaver Mac版
시각적 웹 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
